Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vavilovskii Zhurnal Genet Selektsii ; 27(2): 146-152, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37063518

RESUMEN

Earthworms are an important ecological group that has a significant impact on soil fauna as well as plant communities. Despite their importance, genetic diversity and phylogeny of earthworms are still insufficiently studied. Most studies on earthworm genetic diversity are currently based on a few mitochondrial and nuclear genes. Mitochondrial genomes are becoming a promising target for phylogeny reconstruction in earthworms. However, most studies on earthworm mitochondrial genomes were made on West European and East Asian species, with much less sampling from other regions. In this study, we performed sequencing, assembly, and analysis of the mitochondrial genome of Dendrobaena tellermanica Perel, 1966 from the Northern Caucasus. This species was earlier included into D. schmidti (Michaelsen, 1907), a polytypic species with many subspecies. The genome was assembled as a single contig 15,298 bp long which contained a typical gene set: 13 protein-coding genes (three subunits of cytochrome c oxidase, seven subunits of NADH dehydrogenase, two subunits of ATP synthetase, and cytochrome b), 12S and 16S ribosomal RNA genes, and 22 tRNA genes. All genes were located on one DNA strand. The assembled part of the control region, located between the tRNA-Arg and tRNA-His genes, was 727 bp long. The control region contained multiple hairpins, as well as tandem repeats of the AACGCTT monomer. Phylogenetic analysis based on the complete mitochondrial genomes indicated that the genus Dendrobaena occupied the basal position within Lumbricidae. D. tellermanica was a rather distant relative of the cosmopolitan D. octaedra, suggesting high genetic diversity in this genus. D. schmidti turned out to be paraphyletic with respect to D. tellermanica. Since D. schmidti is known to contain very high genetic diversity, these results may indicate that it may be split into several species.

2.
Vavilovskii Zhurnal Genet Selektsii ; 26(1): 109-116, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35342853

RESUMEN

The Siberian wood frog Rana amurensis Boulenger, 1886 is the most hypoxia-tolerant amphibian. It can survive for several months in an almost complete absence of oxygen. Little is known about the mechanisms of this remarkable resilience, in part because studies of amphibian genomes are impeded by their large size. To make the Siberian wood frog more amenable for genetic analysis, we performed transcriptome sequencing and de novo assembly for the R. amurensis brain under hypoxia and normoxia, as well as for the normoxic heart. In order to build a de novo transcriptome assembly of R. amurensis, we utilized 125-bp paired-end reads obtained from the brain under normoxia and hypoxia conditions, and from the heart under normoxia. In the transcriptome assembled from about 100,000,000 reads, 81.5 % of transcripts were annotated as complete, 5.3 % as fragmented, and 13.2 % as missing. We detected 59,078 known transcripts that clustered into 22,251 genes; 11,482 of them were assigned to specific GO categories. Among them, we found 6696 genes involved in protein binding, 3531 genes involved in catalytic activity, and 576 genes associated with transporter activity. A search for genes encoding receptors of the most important neurotransmitters, which may participate in the response to hypoxia, resulted in a set of expressed receptors of dopamine, serotonin, GABA, glutamate, acetylcholine, and norepinephrine. Unexpectedly, no transcripts for histamine receptors were found. The data obtained in this study create a valuable resource for studying the mechanisms of hypoxia tolerance in the Siberian wood frog, as well as for amphibian studies in general.

3.
Vavilovskii Zhurnal Genet Selektsii ; 25(6): 647-651, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34782884

RESUMEN

The size of the nuclear genome in eukaryotes is mostly determined by mobile elements and noncoding sequences and may vary within wide limits. It can differ signif icantly both among higher-order taxa and closely related species within a genus; genome size is known to be uncorrelated with organism complexity (the so-called C-paradox). Less is known about intraspecif ic variation of this parameter. Typically, genome size is stable within a species, and the known exceptions turn out be cryptic taxa. The Eisenia nordenskioldi complex encompasses several closely related earthworm species. They are widely distributed in the Urals, Siberia, and the Russian Far East, as well as adjacent regions. This complex is characterized by signif icant morphological, chromosomal, ecological, and genetic variation. The aim of our study was to estimate the nuclear genome size in several genetic lineages of the E. nordenskioldi complex using f low cytometry. The genome size in different genetic lineages differed strongly, which supports the hypothesis that they are separate species. We found two groups of lineages, with small (250-500 Mbp) and large (2300-3500 Mbp) genomes. Moreover, different populations within one lineage also demonstrated variation in genome size (15-25 %). We compared the obtained data to phylogenetic trees based on transcriptome data. Genome size in ancestral population was more likely to be big. It increased or decreased independently in different lineages, and these processes could be associated with changes in genome size and/or transition to endogeic lifestyle.

4.
Vavilovskii Zhurnal Genet Selektsii ; 24(1): 48-54, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33659780

RESUMEN

Dendrobaena schmidti (Michaelsen, 1907) is a polymorphic earthworm species from the Caucasus and adjacent regions. Adult D. schmidti individuals have highly variable body size (from 1.5 to well over 10 cm) and color (from dark purple to total lack of pigmentation), so a lot of subspecies of D. schmidti have been described; however, the existence of most of them is currently under dispute. We studied the genetic diversity of D. schmidti from seven locations from the Western Caucasus using mitochondrial (a fragment of the cytochrome oxidase I gene) and nuclear (internal ribosomal transcribed spacer 2) DNA. For both genes studied, we found that our sample was split into two groups. The first group included somewhat bigger (3-7.5 cm) individuals that were only slightly pigmented or totally unpigmented (when fixed by ethanol). The second group contained small (1.7-3.5 cm) specimens with dark purple pigmentation. In one of the studied locations these two groups were found in sympatry. However, there were no absolute differences either in general appearance (pigmented/unpigmented, small/big) or among diagnostic characters. Although the two groups differed in size (the majority of individuals from the first group were 5-6 cm long, and of the second one, 2-3 cm), the studied samples overlapped to a certain degree. Pigmentation, despite apparent differences, was also unreliable, since it was heavily affected by fixation of the specimens. Thus, based on the obtained data we can conclude that D. schmidti consists of at least two species that have identical states of diagnostic characters, but differ in general appearance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...