Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 64(3): 317-324, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36611272

RESUMEN

During organogenesis, a key step toward the development of a functional organ is the separation of cells into specific domains with different activities. Mutual inhibition of gene expression has been shown to be sufficient to establish and maintain these domains during organogenesis in several multicellular organisms. Here, we show that the mutual inhibition between the PLETHORA transcription factors (PLTs) and the ARABIDOPSIS RESPONSE REGULATORs (ARRs) transcription factors is sufficient to separate cell division and cell differentiation during root organogenesis. In particular, we show that ARR1 suppresses PLT activities and that PLTs suppress ARR1 and ARR12 by targeting their proteins for degradation via the KISS ME DEADLY 2 F-box protein. These findings reveal new important aspects of the complex process of root zonation and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Raíces de Plantas , Factores de Transcripción , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Dev Cell ; 53(4): 431-443.e23, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32386600

RESUMEN

During organogenesis, coherent organ growth arises from spatiotemporally coordinated decisions of individual cells. In the root of Arabidopsis thaliana, this coordination results in the establishment of a division and a differentiation zone. Cells continuously move through these zones; thus, a major question is how the boundary between these domains, the transition zone, is formed and maintained. By combining molecular genetics with computational modeling, we reveal how an auxin/PLETHORA/ARR-B network controls these dynamic patterning processes. We show that after germination, cell division causes a drop in distal PLT2 levels that enables transition zone formation and ARR12 activation. The resulting PLT2-ARR12 antagonism controls expansion of the division zone (the meristem). The successive ARR1 activation antagonizes PLT2 through inducing the cell-cycle repressor KRP2, thus setting final meristem size. Our work indicates a key role for the interplay between cell division dynamics and regulatory networks in root zonation and transition zone patterning.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/farmacología , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Factores de Transcripción/genética
3.
J Exp Bot ; 71(3): 934-950, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31642910

RESUMEN

Root growth is modulated by different factors, including phytohormones, transcription factors, and microRNAs (miRNAs). MicroRNA156 and its targets, the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, define an age-dependent pathway that controls several developmental processes, including lateral root emergence. However, it remains unclear whether miR156-regulated SPLs control root meristem activity and root-derived de novo shoot regeneration. Here, we show that MIR156 and SPL genes have opposing expression patterns during the progression of primary root (PR) growth in Arabidopsis, suggesting that age cues may modulate root development. Plants with high miR156 levels display reduced meristem size, resulting in shorter primary root (PRs). Conversely, plants with reduced miR156 levels show higher meristem activity. Importantly, loss of function of SPL10 decreases meristem activity, while SPL10 de-repression increases it. Meristem activity is regulated by SPL10 probably through the reduction of cytokinin responses, via the modulation of type-B ARABIDOPSIS RESPONSE REGULATOR1(ARR1) expression. We also show that SPL10 de-repression in the PRs abolishes de novo shoot regenerative capacity by attenuating cytokinin responses. Our results reveal a cooperative regulation of root meristem activity and root-derived de novo shoot regeneration by integrating age cues with cytokinin responses via miR156-targeted SPL10.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Citocininas/metabolismo , Meristema/fisiología , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo
4.
Development ; 145(1)2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29158439

RESUMEN

A clear example of interspecific variation is the number of root cortical layers in plants. The genetic mechanisms underlying this variability are poorly understood, partly because of the lack of a convenient model. Here, we demonstrate that Cardamine hirsuta, unlike Arabidopsis thaliana, has two cortical layers that are patterned during late embryogenesis. We show that a miR165/6-dependent distribution of the HOMEODOMAIN LEUCINE ZIPPER III (HD-ZIPIII) transcription factor PHABULOSA (PHB) controls this pattern. Our findings reveal that interspecies variation in miRNA distribution can determine differences in anatomy in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cardamine/metabolismo , Proteínas de Homeodominio/metabolismo , MicroARNs/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/anatomía & histología , Cardamine/anatomía & histología , Raíces de Plantas/anatomía & histología
5.
J Exp Bot ; 66(4): 1113-21, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25628331

RESUMEN

Root indeterminate growth and its outstanding ability to produce new tissues continuously make this organ a highly dynamic structure able to respond promptly to external environmental stimuli. Developmental processes therefore need to be finely tuned, and hormonal cross-talk plays a pivotal role in the regulation of root growth. In contrast to what happens in animals, plant development is a post-embryonic process. A pool of stem cells, placed in a niche at the apex of the meristem, is a source of self-renewing cells that provides cells for tissue formation. During the first days post-germination, the meristem reaches its final size as a result of a balance between cell division and cell differentiation. A complex network of interactions between hormonal pathways co-ordinates such developmental inputs. In recent years, by means of molecular and computational approaches, many efforts have been made aiming to define the molecular components of these networks. In this review, we focus our attention on the molecular mechanisms at the basis of hormone cross-talk during root meristem size determination.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Plantas/genética , Diferenciación Celular , División Celular , Citocininas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transducción de Señal , Nicho de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA