Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14034, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890334

RESUMEN

The proliferation of smartphones has catalyzed diverse services, mainly focusing on indoor localization to determine users' and devices' positions within buildings. Despite decades of exploration, the seamless integration of wireless technologies in tracking devices and users has become pivotal in various sectors, including health, industry, disaster management, building operations, and surveillance. Extensive research in laboratory and industrial settings, particularly in wireless sensor networks and robotics, has informed indoor localization techniques. This paper, referencing surveys and original literature reviews, proposes an innovative indoor location system amalgamating GPS and barometer readings. GPS identifies entry through doors, while barometer readings facilitate accurate floor-level tracking. The integration promises continuous real-time location updates, enhancing security, navigation, and emergency response. Notably, the algorithm is infrastructure-independent, relying on the smartphone's barometer, and versatile, detecting elevator travel when Wi-Fi AP or LTE signals are available. Results indicate high accuracy, with building entry exceeding 93%, elevator recognition achieving 75% sensitivity and 97% specificity, and floor change detection surpassing 95% sensitivity and nearly 98% specificity (which translates to nearly 97% accuracy). This comprehensive solution, emphasizing the critical role of precise vertical positioning, signifies an advancement in tracking within urban structures.

2.
Sensors (Basel) ; 15(9): 22060-88, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26340633

RESUMEN

The paper presents a practical application of the crowdsensing idea to measure human mobility and signal coverage in cellular networks. Currently, virtually everyone is carrying a mobile phone, which may be used as a sensor to gather research data by measuring, e.g., human mobility and radio signal levels. However, many users are unwilling to participate in crowdsensing experiments. This work begins with the analysis of the barriers for engaging people in crowdsensing. A survey showed that people who agree to participate in crowdsensing expect a minimum impact on their battery lifetime and phone usage habits. To address these requirements, this paper proposes an application for measuring the location and signal strength data based on energy-efficient GPS tracking, which allows one to perform the measurements of human mobility and radio signal levels with minimum energy utilization and without any engagement of the user. The method described combines measurements from the accelerometer with effective management of the GPS to monitor the user mobility with the decrease in battery lifetime by approximately 20%. To show the applicability of the proposed platform, the sample results of signal level distribution and coverage maps gathered for an LTE network and representing human mobility are shown.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA