Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; : e2400296, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923553

RESUMEN

Nontuberculous mycobacteria (NTM), which include the Mycobacterium avium complex, are classified as difficult-to-treat pathogens due to their ability to quickly develop drug resistance against the most common antibiotics used to treat NTM infections. The overexpression of efflux pumps (EPs) was demonstrated to be a key mechanism of clarithromycin (CLA) resistance in NTM. Therefore, in this work, 24 compounds from an in-house library, characterized by chemical diversity, were tested as potential NTM EP inhibitors (EPIs) against Mycobacterium smegmatis mc2 155 and M. avium clinical isolates. Based on the acquired results, 12 novel analogs of the best derivatives 1b and 7b were designed and synthesized to improve the NTM EP inhibition activity. Among the second set of compounds, 13b emerged as the most potent NTM EPI. At a concentration of 4 µg/mL, it reduced the CLA minimum inhibitory concentration by 16-fold against the clinical isolate M. avium 2373 overexpressing EPs as primary mechanism of CLA resistance.

2.
Biosens Bioelectron ; 258: 116340, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718633

RESUMEN

The escalating global incidence of infectious diseases caused by pathogenic bacteria, especially in developing countries, emphasises the urgent need for rapid and portable pathogen detection devices. This study introduces a sensitive and specific electrochemical biosensing platform utilising cost-effective electrodes fabricated by inkjet-printing gold and silver nanoparticles on a plastic substrate. The biosensor exploits the CRISPR/Cas12a system for detecting a specific DNA sequence selected from the genome of the target pathogen. Upon detection, the trans-activity of Cas12a/gRNA is triggered, leading to the cleavage of rationally designed single-strand DNA reporters (linear and hairpin) labelled with methylene blue (ssDNA-MB) and bound to the electrode surface. In principle, this sensing mechanism can be adapted to any bacterium by choosing a proper guide RNA to target a specific sequence of its DNA. The biosensor's performance was assessed for two representative pathogens (a Gram-negative, Escherichia coli, and a Gram-positive, Staphylococcus aureus), and results obtained with inkjet-printed gold electrodes were compared with those obtained by commercial screen-printed gold electrodes. Our results show that the use of inkjet-printed nanostructured gold electrodes, which provide a large surface area, in combination with the use of hairpin reporters containing a poly-T loop can increase the sensitivity of the assay corresponding to a signal variation of 86%. DNA targets amplified from various clinically isolated bacteria, have been tested and demonstrate the potential of the proposed platform for point-of-need applications.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Escherichia coli , Oro , Nanopartículas del Metal , Staphylococcus aureus , Técnicas Biosensibles/instrumentación , Oro/química , Staphylococcus aureus/aislamiento & purificación , Staphylococcus aureus/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/genética , Nanopartículas del Metal/química , Plata/química , ADN Bacteriano/análisis , ADN Bacteriano/genética , Técnicas Electroquímicas/métodos , Humanos , Nanoestructuras/química , ADN de Cadena Simple/química , Electrodos , Impresión , Proteínas Bacterianas/genética , Endodesoxirribonucleasas , Proteínas Asociadas a CRISPR
3.
J Glob Antimicrob Resist ; 37: 53-61, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38331031

RESUMEN

OBJECTIVES: The main aim of this study was to evaluate the antibiofilm activity of cefiderocol alone and in combination with imipenem vs. sessile cells of Pseudomonas aeruginosa, assessing a potential synergistic bactericidal effect. METHODS: Ten P. aeruginosa clinical isolates from infected implants and bloodstream were included in the study. Cefiderocol was tested alone and in combination with imipenem on 24-h-old P. aeruginosa biofilm formed on porous glass beads. For each antibiotic formulation, minimum bactericidal biofilm concentration (MBBC), defined as the lowest concentration that determined a reduction of at least 3 log10 CFU/mL compared with the untreated control, was evaluated. Scanning electron microscopy (SEM) was used to investigate the biofilm of P. aeruginosa treated with cefiderocol, imipenem, or their combination. RESULTS: Cefiderocol and imipenem were tested alone on P. aeruginosa biofilm and a reasonable reduction in the number of viable cells was observed, especially at high drug concentrations tested. The synergistic effect of cefiderocol in combination with imipenem was evaluated for five selected isolates. Cotreatment with the two drugs led to a remarkable reduction of cell viability by resulting in synergistic bactericidal activity in all tested strains and in synergistic eradicating activity in only one isolate. SEM analysis revealed that, in cefiderocol-treated biofilm, bacterial cells became more elongated than in the untreated control, forming filaments in which bacterial division seems to be inhibited. CONCLUSIONS: Cefiderocol exhibited an encouraging antibiofilm activity against tested strains, representing a valid option for the treatment of P. aeruginosa biofilm-associated infections, especially when administered in combination with imipenem.


Asunto(s)
Antibacterianos , Biopelículas , Cefiderocol , Cefalosporinas , Sinergismo Farmacológico , Imipenem , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Imipenem/farmacología , Antibacterianos/farmacología , Humanos , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Cefalosporinas/farmacología , Microscopía Electrónica de Rastreo , Viabilidad Microbiana/efectos de los fármacos
4.
J Fungi (Basel) ; 9(8)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37623569

RESUMEN

Fungal diseases cause millions of deaths per year worldwide. Antifungal resistance has become a matter of great concern in public health. In recent years rates of non-albicans species have risen dramatically. Candida parapsilosis is now reported to be the second most frequent species causing candidemia in several countries in Europe, Latin America, South Africa and Asia. Rates of acquired azole resistance are reaching a worrisome threshold from multiple reports as in vitro susceptibility testing is now starting also to explore tolerance and heteroresistance to antifungal compounds. With this review, the authors seek to evaluate known antifungal resistance mechanisms and their worldwide distribution in Candida species infections with a specific focus on C. parapsilosis.

5.
Appl Microbiol Biotechnol ; 107(18): 5627-5634, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37486352

RESUMEN

Climate change due to the continuous increase in the release of green-house gasses associated with anthropogenic activity has made a significant impact on the sustainability of life on our planet. Methane (CH4) is a green-house gas whose concentrations in the atmosphere are on the rise. CH4 measurement is important for both the environment and the safety at the industrial and household level. Methanotrophs are distinguished for their unique characteristic of using CH4 as the sole source of carbon and energy, due to the presence of the methane monooxygenases that oxidize CH4 under ambient temperature conditions. This has attracted interest in the use of methanotrophs in biotechnological applications as well as in the development of biosensing systems for CH4 quantification and monitoring. Biosensing systems using methanotrophs rely on the use of whole microbial cells that oxidize CH4 in presence of O2, so that the CH4 concentration is determined in an indirect manner by measuring the decrease of O2 level in the system. Although several biological properties of methanotrophic microorganisms still need to be characterized, different studies have demonstrated the feasibility of the use of methanotrophs in CH4 measurement. This review summarizes the contributions in methane biosensing systems and presents a prospective of the valid use of methanotrophs in this field. KEY POINTS: • Methanotroph environmental relevance in methane oxidation • Methanotroph biotechnological application in the field of biosensing • Methane monooxygenase as a feasible biorecognition element in biosensors.


Asunto(s)
Gases , Metano , Oxidación-Reducción , Biotecnología , Cambio Climático , Microbiología del Suelo
6.
Biosensors (Basel) ; 12(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36291031

RESUMEN

Sepsis is defined as a systemic inflammatory dysfunction strictly associated with infectious diseases, which represents an important health issue whose incidence is continuously increasing worldwide. Nowadays, sepsis is considered as one of the main causes of death that mainly affects critically ill patients in clinical settings, with a higher prevalence in low-income countries. Currently, sepsis management still represents an important challenge, since the use of traditional techniques for the diagnosis does not provide a rapid response, which is crucial for an effective infection management. Biosensing systems represent a valid alternative due to their characteristics such as low cost, portability, low response time, ease of use and suitability for point of care/need applications. This review provides an overview of the infectious agents associated with the development of sepsis and the host biomarkers suitable for diagnosis and prognosis. Special focus is given to the new emerging biosensing technologies using electrochemical and optical transduction techniques for sepsis diagnosis and management.


Asunto(s)
Técnicas Biosensibles , Sepsis , Humanos , Técnicas Biosensibles/métodos , Sepsis/diagnóstico , Diagnóstico Precoz , Biomarcadores , Sistemas de Atención de Punto
7.
J Pharm Biomed Anal ; 204: 114268, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34298471

RESUMEN

The rapid and selective identification in the clinical setting of pathogenic bacteria causing healthcare associated infections (HAIs) and in particular blood stream infections (BSIs) is a major challenge, as the number of people affected worldwide and the associated mortality are on the rise. In fact, traditional laboratory techniques such culture and polymerase chain reaction (PCR)-based methodologies are often associated to long turnaround times, which justify the pressing need for the development of rapid, specific and portable point of care devices. The recently discovered clustered regularly interspaced short palindromic repeat loci (CRISPR) and the new class of programmable endonuclease enzymes called CRISPR associated proteins (Cas) have revolutionised molecular diagnostics. The use of Cas proteins in optical and electrochemical biosensing devices has significantly improved the detection of nucleic acids in clinical samples. In this study, a CRISPR/Cas12a system was coupled with electrochemical impedance spectroscopy (EIS) measurements to develop a label-free biosensing assay for the detection of Escherichia coli and Staphylococcus aureus, two bacterial species commonly associated to BSI infections. The programmable Cas12a endonuclease activity, induced by a specific guide RNA (gRNA), and the triggered collateral activity were assessed in in vitro restriction analyses, and evaluated thanks to impedance measurements using a modified gold electrode. The Cas12a/gRNA system was able to specifically recognize amplicons from different clinical isolates of E. coli and S. aureus with a limit of detection of 3 nM and a short turnaround time approximately of 1.5 h. To the best of our knowledge, this is the first biosensing device based on CRISPR/Cas12a label free impedance assay.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , ADN Bacteriano/genética , Impedancia Eléctrica , Escherichia coli/genética , Humanos , Staphylococcus aureus/genética
8.
J Fungi (Basel) ; 7(6)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200514

RESUMEN

An increase in the rate of isolation of Candida parapsilosis in the past decade, as well as increased identification of azole-resistant strains are concerning, and require better understanding of virulence-like factors and drug-resistant traits of these species. In this regard, the present review "draws a line" on the information acquired, thus far, on virulence determinants and molecular mechanisms of antifungal resistance in these opportunistic pathogens, mainly derived from genetic manipulation studies. This will provide better focus on where we stand in our understanding of the C. parapsilosis species complex-host interaction, and how far we are from defining potential novel targets or therapeutic strategies-key factors to pave the way for a more tailored management of fungal infections caused by these fungal pathogens.

9.
ACS Appl Mater Interfaces ; 13(26): 30245-30260, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34167302

RESUMEN

Notwithstanding its relatively recent discovery, graphene has gone through many evolution steps and inspired a multitude of applications in many fields, from electronics to life science. The recent advancements in graphene production and patterning, and the inclusion of two-dimensional (2D) graphenic materials in three-dimensional (3D) superstructures, further extended the number of potential applications. In this Review, we focus on laser-induced graphene (LIG), an intriguing 3D porous graphenic material produced by direct laser scribing of carbonaceous precursors, and on its applications in chemical sensors and biosensors. LIG can be shaped in different 3D forms with a high surface-to-volume ratio, which is a valuable characteristic for sensors that typically rely on phenomena occurring at surfaces and interfaces. Herein, an overview of LIG, including synthesis from various precursors, structure, and characteristic properties, is first provided. The discussion focuses especially on transport and surface properties, and on how these can be controlled by tuning the laser processing. Progresses and trends in LIG-based chemical sensors are then reviewed, discussing the various transduction mechanisms and different LIG functionalization procedures for chemical sensing. A comparative evaluation of sensors performance is then provided. Finally, sensors for glucose detection are reviewed in more detail, since they represent the vast majority of LIG-based chemical sensors.

10.
J Pharm Biomed Anal ; 192: 113645, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33039910

RESUMEN

A main challenge in the development of biosensing devices for the identification and quantification of nucleic acids is to avoid the amplification of the genetic material from the sample by polymerase chain reaction (PCR), which is at present necessary to enhance sensitivity and selectivity of assays. PCR has undoubtedly revolutionized genetic analyses, but it requires careful purification procedures that are not easily implemented in point of care (POC) devices. In recent years, a new strategy for nucleic acid detection based on clustered regularly interspaced short palindromic repeats (CRISPR) and associated protein systems (Cas) seems to offer unprecedented possibilities. The coupling of the CRISPR/Cas system with recent isothermal amplification methods is fostering the development of innovative optical and electrochemical POC devices. In this review, the mechanisms of action of several new CRISRP/Cas systems are reported together with their use in biosensing of nucleic acids.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Ácidos Nucleicos/genética , Sistemas de Atención de Punto
11.
Polymers (Basel) ; 12(2)2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050664

RESUMEN

Fluorinated (F6) and zwitterionic, as well as phosphorylcholine (MPC) and sulfobetaine (MSA), copolymers containing a low amount (1 and 5 mol%) of 3-(trimethoxysilyl)propyl methacrylate (PTMSi) were prepared and covalently grafted to glass slides by using the trimethoxysilyl groups as anchorage points. Glass-surface functionalization and polymer-film stability upon immersion in water were proven by contact angle and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) measurements. Antifouling performance of the grafted films was assayed against the yeast Candida albicans, the most common Candida species, which causes over 80% of candidiasis. Results revealed that the F6 fluorinated, hydrophobic copolymers performed much better in reducing the adhesion of C. albicans, with respect to both corresponding zwitterionic, hydrophilic MPC and MSA counterparts, and were similar to the glass negative control, which is well-known to inhibit the adhesion of C. albicans. A composition-dependent activity was also found, with the films of copolymer with 99 mol% F6 fluorinated co-units performing best.

12.
Future Microbiol ; 14: 1383-1396, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31659913

RESUMEN

Aim: In this study, the CRISPR gene-editing approach was used to simultaneously inactivate all three members of the ALS gene family in the opportunistic pathogen Candida orthopsilosis. Materials & methods: Using a single gRNA and repair template, CRISPR-edited clones were successfully generated in a one-step process in both C. orthopsilosis reference and clinical strains. Results: The phenotypic characterization of the ALS triple-edited strains revealed no impact on growth in liquid or solid media. However, pseudohyphal formation and the ability to adhere to human buccal epithelial cells were significantly decreased in triple-edited clones. Conclusion: Our CRISPR/Cas9 system is a powerful tool for simultaneous editing of fungal gene families, which greatly accelerates the generation of multiple gene-edited Candida strains. Data deposition: Nucleotide sequence data are available in the GenBank databases under the accession numbers MK875971, MK875972, MK875973, MK875974, MK875975, MK875976, MK875977.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Candida parapsilosis/genética , Edición Génica/métodos , Genes Fúngicos , Secuencia de Bases , Candida parapsilosis/crecimiento & desarrollo , Candidiasis/microbiología , Adhesión Celular , Células Cultivadas , Células Epiteliales/microbiología , Humanos , Hifa/crecimiento & desarrollo , Boca/citología , Familia de Multigenes , ARN Guía de Kinetoplastida/genética
13.
J Antimicrob Chemother ; 73(7): 1815-1822, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635519

RESUMEN

Background: Candida orthopsilosis is a human fungal pathogen responsible for a wide spectrum of symptomatic infections. Evidence suggests that C. orthopsilosis is mainly susceptible to azoles, the most extensively used antifungals for treatment of these infections. However, fluconazole-resistant clinical isolates are reported. Objectives: This study evaluated the contribution of a single amino acid substitution in the azole target CoErg11 to the development of azole resistance in C. orthopsilosis. Methods: C. orthopsilosis clinical isolates (n = 40) were tested for their susceptibility to azoles and their CoERG11 genes were sequenced. We used a SAT1 flipper-driven transformation to integrate a mutated CoERG11 allele in the genetic background of a fluconazole-susceptible isolate. Results: Susceptibility testing revealed that 16 of 40 C. orthopsilosis clinical isolates were resistant to fluconazole and to at least one other azole. We identified an A395T mutation in the CoERG11 coding sequence of azole-resistant isolates only that resulted in the non-synonymous amino acid substitution Y132F. The SAT1 flipper cassette strategy led to the creation of C. orthopsilosis mutants that carried the A395T mutation in one or both CoERG11 alleles (heterozygous or homozygous mutant, respectively) in an azole-susceptible genetic background. We tested mutant strains for azole susceptibility and for hot-spot locus heterozygosity. Both the heterozygous and the homozygous mutant strains exhibited an azole-resistant phenotype. Conclusions: To the best of our knowledge, these findings provide the first evidence that the CoErg11 Y132F substitution confers multi-azole resistance in C. orthopsilosis.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/genética , Farmacorresistencia Fúngica Múltiple/genética , Proteínas Fúngicas/genética , Sustitución de Aminoácidos , Azoles/uso terapéutico , Candidiasis/microbiología , Fluconazol/farmacología , Fluconazol/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA