Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Eukaryot Microbiol ; 69(3): e12902, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35279911

RESUMEN

Speciation is a complex and continuous process that makes the delineation of species boundaries a challenging task in particular in species with little morphological differentiation, such as parasites. In this case, the use of genomic data is often necessary, such as for the intracellular Microsporidian parasites. Here, we characterize the genome of a gut parasite of the cladoceran Daphnia longispina (isolate FI-F-10), which we propose as a new species within the genus Ordospora: Ordospora pajunii sp. nov (Ordosporidae). FI-F-10 closest relative, Ordospora colligata is only found in D. magna. Both microsporidian species share several morphological features. Although it is not possible to estimate divergence times for Microsporidia due to the lack of fossil records and accelerated evolutionary rates, we base our proposal on the phylogenomic and genomic distances between both microsporidian lineages. The phylogenomic reconstruction shows that FI-F-10 forms an early diverging branch basal to the cluster that contains all known O. colligata strains. Whole-genome comparisons show that FI-F-10 presents a greater divergence at the sequence level than observed among O. colligata strains, and its genomic average nucleotide identity (ANI) values against O. colligata are beyond the intraspecific range previously established for yeast and prokaryotes. Our data confirm that the ANI metrics are useful for fine genetic divergence calibration across Microsporidia taxa. In combination with phylogenetic and ecological data, genome-based metrics provide a powerful approach to delimitate species boundaries.


Asunto(s)
Microsporidios , Parásitos , Animales , Daphnia/genética , Daphnia/parasitología , Genómica , Microsporidios/genética , Filogenia
2.
Genome Biol Evol ; 12(1): 3599-3614, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31825473

RESUMEN

Microsporidia have the leanest genomes among eukaryotes, and their physiological and genomic simplicity has been attributed to their intracellular, obligate parasitic life-style. However, not all microsporidia genomes are small or lean, with the largest dwarfing the smallest ones by at least an order of magnitude. To better understand the evolutionary mechanisms behind this genomic diversification, we explore here two clades of microsporidia with distinct life histories, Ordospora and Hamiltosporidium, parasitizing the same host species, Daphnia magna. Based on seven newly assembled genomes, we show that mixed-mode transmission (the combination of horizontal and vertical transmission), which occurs in Hamiltosporidium, is found to be associated with larger and AT-biased genomes, more genes, and longer intergenic regions, as compared with the exclusively horizontally transmitted Ordospora. Furthermore, the Hamiltosporidium genome assemblies contain a variety of repetitive elements and long segmental duplications. We show that there is an excess of nonsynonymous substitutions in the microsporidia with mixed-mode transmission, which cannot be solely attributed to the lack of recombination, suggesting that bursts of genome size in these microsporidia result primarily from genetic drift. Overall, these findings suggest that the switch from a horizontal-only to a mixed mode of transmission likely produces population bottlenecks in Hamiltosporidium species, therefore reducing the effectiveness of natural selection, and allowing their genomic features to be largely shaped by nonadaptive processes.


Asunto(s)
Evolución Molecular , Genoma Fúngico , Microsporidios/genética , Transferencia de Gen Horizontal , Flujo Genético , Recombinación Genética , Selección Genética
3.
Gigascience ; 1(1): 14, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23587420

RESUMEN

BACKGROUND: Amazona vittata is a critically endangered Puerto Rican endemic bird, the only surviving native parrot species in the United States territory, and the first parrot in the large Neotropical genus Amazona, to be studied on a genomic scale. FINDINGS: In a unique community-based funded project, DNA from an A. vittata female was sequenced using a HiSeq Illumina platform, resulting in a total of ~42.5 billion nucleotide bases. This provided approximately 26.89x average coverage depth at the completion of this funding phase. Filtering followed by assembly resulted in 259,423 contigs (N50 = 6,983 bp, longest = 75,003 bp), which was further scaffolded into 148,255 fragments (N50 = 19,470, longest = 206,462 bp). This provided ~76% coverage of the genome based on an estimated size of 1.58 Gb. The assembled scaffolds allowed basic genomic annotation and comparative analyses with other available avian whole-genome sequences. CONCLUSIONS: The current data represents the first genomic information from and work carried out with a unique source of funding. This analysis further provides a means for directed training of young researchers in genetic and bioinformatics analyses and will facilitate progress towards a full assembly and annotation of the Puerto Rican parrot genome. It also adds extensive genomic data to a new branch of the avian tree, making it useful for comparative analyses with other avian species. Ultimately, the knowledge acquired from these data will contribute to an improved understanding of the overall population health of this species and aid in ongoing and future conservation efforts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA