Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Sci Rep ; 10(1): 1284, 2020 Jan 28.
Article En | MEDLINE | ID: mdl-31992776

Host genetic susceptibility to leprosy has been intensively investigated over the last decades; however, there are no studies on the role of genetic variants in disease recurrence. A previous initiative identified three recurrent cases of leprosy for which none of the M. leprae strains, as obtained in the first and the second diagnosis, had any known genomic variants associated to resistance to Multidrug therapy; in addition, whole genome sequencing indicated that the same M. leprae was causing two out of the three recurrences. Thus, these individuals were suspected of being particularly susceptible to M. leprae infection, either as relapse or reinfection. To verify this hypothesis, 19 genetic markers distributed across 11 loci (14 genes) classically associated with leprosy were genotyped in the recurrent and in three matching non-recurrent leprosy cases. An enrichment of risk alleles was observed in the recurrent cases, suggesting the existence of a particularly high susceptibility genetic profile among leprosy patients predisposing to disease recurrence.


Genetic Loci , Genetic Predisposition to Disease , Leprosy/genetics , Mycobacterium leprae , Polymorphism, Single Nucleotide , Whole Genome Sequencing , Female , Humans , Male , Recurrence
2.
PLoS Negl Trop Dis ; 11(6): e0005598, 2017 Jun.
Article En | MEDLINE | ID: mdl-28617800

BACKGROUND: Since leprosy is both treated and controlled by multidrug therapy (MDT) it is important to monitor recurrent cases for drug resistance and to distinguish between relapse and reinfection as a means of assessing therapeutic efficacy. All three objectives can be reached with single nucleotide resolution using next generation sequencing and bioinformatics analysis of Mycobacterium leprae DNA present in human skin. METHODOLOGY: DNA was isolated by means of optimized extraction and enrichment methods from samples from three recurrent cases in leprosy patients participating in an open-label, randomized, controlled clinical trial of uniform MDT in Brazil (U-MDT/CT-BR). Genome-wide sequencing of M. leprae was performed and the resultant sequence assemblies analyzed in silico. PRINCIPAL FINDINGS: In all three cases, no mutations responsible for resistance to rifampicin, dapsone and ofloxacin were found, thus eliminating drug resistance as a possible cause of disease recurrence. However, sequence differences were detected between the strains from the first and second disease episodes in all three patients. In one case, clear evidence was obtained for reinfection with an unrelated strain whereas in the other two cases, relapse appeared more probable. CONCLUSIONS/SIGNIFICANCE: This is the first report of using M. leprae whole genome sequencing to reveal that treated and cured leprosy patients who remain in endemic areas can be reinfected by another strain. Next generation sequencing can be applied reliably to M. leprae DNA extracted from biopsies to discriminate between cases of relapse and reinfection, thereby providing a powerful tool for evaluating different outcomes of therapeutic regimens and for following disease transmission.


Genome, Bacterial , Leprosy/diagnosis , Molecular Typing/methods , Mycobacterium leprae/classification , Mycobacterium leprae/genetics , Sequence Analysis, DNA/methods , Adolescent , Adult , Brazil , Computational Biology/methods , DNA, Bacterial/isolation & purification , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Mycobacterium leprae/isolation & purification , Randomized Controlled Trials as Topic , Recurrence , Young Adult
4.
PLoS Negl Trop Dis ; 6(4): e1616, 2012.
Article En | MEDLINE | ID: mdl-22545169

During recent years, comparative genomic analysis has allowed the identification of Mycobacterium leprae-specific genes with potential application for the diagnosis of leprosy. In a previous study, 58 synthetic peptides derived from these sequences were tested for their ability to induce production of IFN-γ in PBMC from endemic controls (EC) with unknown exposure to M. leprae, household contacts of leprosy patients and patients, indicating the potential of these synthetic peptides for the diagnosis of sub- or preclinical forms of leprosy. In the present study, the patterns of IFN-γ release of the individuals exposed or non-exposed to M. leprae were compared using an Artificial Neural Network algorithm, and the most promising M. leprae peptides for the identification of exposed people were selected. This subset of M. leprae-specific peptides allowed the differentiation of groups of individuals from sites hyperendemic for leprosy versus those from areas with lower level detection rates. A progressive reduction in the IFN-γ levels in response to the peptides was seen when contacts of multibacillary (MB) patients were compared to other less exposed groups, suggesting a down modulation of IFN-γ production with an increase in bacillary load or exposure to M. leprae. The data generated indicate that an IFN-γ assay based on these peptides applied individually or as a pool can be used as a new tool for predicting the magnitude of M. leprae transmission in a given population.


Antigens, Bacterial , Epitopes/immunology , Interferon-gamma Release Tests/methods , Leprosy/diagnosis , Leprosy/transmission , Mycobacterium leprae/immunology , Adult , Aged , Antigens, Bacterial/immunology , Female , Humans , Male , Middle Aged , Neural Networks, Computer
...