Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
JCI Insight ; 9(10)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652537

NKX2-5 is a member of the homeobox-containing transcription factors critical in regulating tissue differentiation in development. Here, we report a role for NKX2-5 in vascular smooth muscle cell phenotypic modulation in vitro and in vascular remodeling in vivo. NKX2-5 is upregulated in scleroderma patients with pulmonary arterial hypertension. Suppression of NKX2-5 expression in smooth muscle cells halted vascular smooth muscle proliferation and migration, enhanced contractility, and blocked the expression of extracellular matrix genes. Conversely, overexpression of NKX2-5 suppressed the expression of contractile genes (ACTA2, TAGLN, CNN1) and enhanced the expression of matrix genes (COL1) in vascular smooth muscle cells. In vivo, conditional deletion of NKX2-5 attenuated blood vessel remodeling and halted the progression to hypertension in a mouse chronic hypoxia model. This study revealed that signals related to injury such as serum and low confluence, which induce NKX2-5 expression in cultured cells, is potentiated by TGF-ß and further enhanced by hypoxia. The effect of TGF-ß was sensitive to ERK5 and PI3K inhibition. Our data suggest a pivotal role for NKX2-5 in the phenotypic modulation of smooth muscle cells during pathological vascular remodeling and provide proof of concept for therapeutic targeting of NKX2-5 in vasculopathies.


Homeobox Protein Nkx-2.5 , Muscle, Smooth, Vascular , Vascular Remodeling , Animals , Mice , Homeobox Protein Nkx-2.5/genetics , Homeobox Protein Nkx-2.5/metabolism , Humans , Vascular Remodeling/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Male , Scleroderma, Systemic/pathology , Scleroderma, Systemic/complications , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/genetics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/pathology , Pulmonary Arterial Hypertension/etiology , Female , Transforming Growth Factor beta/metabolism , Disease Models, Animal , Cell Proliferation/genetics , Middle Aged , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/pathology
2.
Eur J Heart Fail ; 26(3): 598-609, 2024 Mar.
Article En | MEDLINE | ID: mdl-38247182

AIMS: Cardiac involvement is the main driver of clinical outcomes in systemic amyloidosis and preliminary studies support the hypothesis that myocardial ischaemia contributes to cellular damage. The aims of this study were to assess the presence and mechanisms of myocardial ischaemia using cardiovascular magnetic resonance (CMR) with multiparametric mapping and histopathological assessment. METHODS AND RESULTS: Ninety-three patients with cardiac amyloidosis (CA) (light-chain amyloidosis n = 42, transthyretin amyloidosis n = 51) and 97 without CA (three-vessel coronary disease [3VD] n = 47, unobstructed coronary arteries n = 26, healthy volunteers [HV] n = 24) underwent quantitative stress perfusion CMR with myocardial blood flow (MBF) mapping. Twenty-four myocardial biopsies and three explanted hearts with CA were analysed histopathologically. Stress MBF was severely reduced in patients with CA with lower values than patients with 3VD, unobstructed coronary arteries and HV (CA: 1.04 ± 0.51 ml/min/g, 3VD: 1.35 ± 0.50 ml/min/g, unobstructed coronary arteries: 2.92 ± 0.52 ml/min/g, HV: 2.91 ± 0.73 ml/min/g; CA vs. 3VD p = 0.011, CA vs. unobstructed coronary arteries p < 0.001, CA vs. HV p < 0.001). Myocardial perfusion abnormalities correlated with amyloid burden, systolic and diastolic function, structural parameters and blood biomarkers (p < 0.05). Biopsies demonstrated abnormal vascular endothelial growth factor staining in cardiomyocytes and endothelial cells, which may be related to hypoxia conditions. Amyloid infiltration in intramural arteries was associated with severe lumen reduction and severe reduction in capillary density. CONCLUSION: Cardiac amyloidosis is associated with severe inducible myocardial ischaemia demonstrable by histology and CMR stress perfusion mapping. Histological evaluation indicates a complex pathophysiology, where in addition to systolic and diastolic dysfunction, amyloid infiltration of the epicardial arteries and disruption and rarefaction of the capillaries play a role in contributing to myocardial ischaemia.


Amyloidosis , Cardiomyopathies , Coronary Circulation , Humans , Male , Female , Middle Aged , Coronary Circulation/physiology , Aged , Cardiomyopathies/physiopathology , Cardiomyopathies/diagnosis , Amyloidosis/physiopathology , Magnetic Resonance Imaging, Cine/methods , Myocardium/pathology , Immunoglobulin Light-chain Amyloidosis/physiopathology , Immunoglobulin Light-chain Amyloidosis/complications , Myocardial Ischemia/physiopathology , Myocardial Ischemia/diagnosis , Amyloid Neuropathies, Familial/physiopathology , Amyloid Neuropathies, Familial/complications , Myocardial Perfusion Imaging/methods , Coronary Vessels/physiopathology , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology , Biopsy
3.
Front Immunol ; 13: 1004949, 2022.
Article En | MEDLINE | ID: mdl-36304460

Background: Recent evidence has indicated that alterations in energy metabolism play a critical role in the pathogenesis of fibrotic diseases. Studies have suggested that 'metabolic reprogramming' involving the glycolysis and oxidative phosphorylation (OXPHOS) in cells lead to an enhanced generation of energy and biosynthesis. The aim of this study was to assess the molecular basis of changes in fibrotic metabolism in systemic sclerosis (Scleroderma; SSc) and highlight the most appropriate targets for anti-fibrotic therapies. Materials and methods: Dermal fibroblasts were isolated from five SSc patients and five healthy donors. Cells were cultured in medium with/without TGF-ß1 and with/without ALK5, pan-PIM or ATM kinase inhibitors. Extracellular flux analyses were performed to evaluate glycolytic and mitochondrial respiratory function. The mitochondrial network in TMRM-stained cells was visualized by confocal laser-scanning microscopy, followed by semi-automatic analysis on the ImageJ platform. Protein expression of ECM and fibroblast components, glycolytic enzymes, subunits of the five OXPHOS complexes, and dynamin-related GTPases and receptors involved in mitochondrial fission/fusion were assessed by western blotting. Results: Enhanced mitochondrial respiration coupled to ATP production was observed in SSc fibroblasts at the expense of spare respiratory capacity. Although no difference was found in glycolysis when comparing SSc with healthy control fibroblasts, levels of phophofructokinase-1 isoform PFKM were significantly lower in SSc fibroblasts (P<0.05). Our results suggest that the number of respirasomes is decreased in the SSc mitochondria; however, the organelles formed a hyperfused network, which is thought to increase mitochondrial ATP production through complementation. The increased mitochondrial fusion correlated with a change in expression levels of regulators of mitochondrial morphology, including decreased levels of DRP1, increased levels of MIEF2 and changes in OPA1 isoform ratios. TGF-ß1 treatment strongly stimulated glycolysis and mitochondrial respiration and induced the expression of fibrotic markers. The pan-PIM kinase inhibitor had no effect, whereas both ALK5 and ATM kinase inhibition abrogated TGF-ß1-mediated fibroblast activation, and upregulation of glycolysis and respiration. Conclusions: Our data provide evidence for a novel mechanism(s) by which SSc fibroblasts exhibit altered metabolic programs and highlight changes in respiration and dysregulated mitochondrial morphology and function, which can be selectively targeted by small molecule kinase inhibitors.


Scleroderma, Localized , Scleroderma, Systemic , Humans , Transforming Growth Factor beta1/metabolism , Cells, Cultured , Scleroderma, Systemic/pathology , Fibrosis , Dynamins , Adenosine Triphosphate , Peptide Elongation Factors , Mitochondrial Proteins
4.
JACC Cardiovasc Imaging ; 15(1): 17-29, 2022 01.
Article En | MEDLINE | ID: mdl-34419399

OBJECTIVES: The aim of this study was to characterize left atrial (LA) pathology in explanted hearts with transthyretin amyloid cardiomyopathy (ATTR-CM); LA mechanics using echocardiographic speckle-tracking in a large cohort of patients with ATTR-CM; and to study the association with mortality. BACKGROUND: The clinical significance of LA involvement in ATTR-CM is of great clinical interest. METHODS: Congo red staining and immunohistochemistry was performed to assess the presence, type, and extent of amyloid and associated changes in 5 explanted ATTR-CM atria. Echo speckle tracking was used to assess LA reservoir, conduit, contractile function, and stiffness in 906 patients with ATTR-CM (551 wild-type (wt)-ATTR-CM; 93 T60A-ATTR-CM; 241 V122I-ATTR-CM; 21 other). RESULTS: There was extensive ATTR amyloid infiltration in the 5 atria, with loss of normal architecture, vessels remodeling, capillary disruption, and subendocardial fibrosis. Echo speckle tracking in 906 patients with ATTR-CM demonstrated increased atrial stiffness (median [25th-75th quartile] 1.83 [1.15-2.92]) that remained independently associated with prognosis after adjusting for known predictors (lnLA stiff: HR: 1.23; 95% CI: 1.03-1.49; P = 0.029). There was substantial impairment of the 3 phasic functional atrial components (reservoir 8.86% [5.94%-12.97%]; conduit 6.5% [4.53%-9.28%]; contraction function 4.0% [2.29%-6.56%]). Atrial contraction was absent in 22.1% of patients whose electrocardiograms showed sinus rhythm (SR) "atrial electromechanical dissociation" (AEMD). AEMD was associated with poorer prognosis compared with patients with SR and effective mechanical contraction (P = 0.0018). AEMD conferred a similar prognosis to patients in atrial fibrillation. CONCLUSIONS: The phenotype of ATTR-CM includes significant infiltration of the atrial walls, with progressive loss of atrial function and increased stiffness, which is a strong independent predictor of mortality. AEMD emerged as a distinctive phenotype identifying patients in SR with poor prognosis.


Amyloid Neuropathies, Familial , Prealbumin , Heart Atria/diagnostic imaging , Humans , Prealbumin/genetics , Predictive Value of Tests
6.
Epigenetics ; 16(7): 718-728, 2021.
Article En | MEDLINE | ID: mdl-32930636

Chronic kidney disease (CKD) related cardiovascular disease (CVD) is characterized by vascular remodelling with well-established structural and functional changes in the vascular wall such as arterial stiffness, matrix deposition, and calcification. These phenotypic changes resemble pathology seen in ageing, and are likely to be mediated by sustained alterations in gene expression, which may be caused by epigenetic changes such as tissue-specific DNA methylation. We aimed to investigate tissue specific changes in DNA methylation that occur in CKD-related CVD. Genome-wide DNA methylation changes were examined in bisulphite converted genomic DNA isolated from the vascular media of CKD and healthy arteries. Methylation-specific PCR was used to validate the array data, and the association between DNA methylation and gene and protein expression was examined. The DNA methylation age was compared to the chronological age in both cases and controls. Three hundred and nineteen differentially methylated regions (DMR) were identified spread across the genome. Pathway analysis revealed that DMRs associated with genes were involved in embryonic and vascular development, and signalling pathways such as TGFß and FGF. Expression of top differentially methylated gene HOXA5 showed a significant negative correlation with DNA methylation. Interestingly, DNA methylation age and chronological age were highly correlated, but there was no evidence of accelerated age-related DNA methylation in the arteries of CKD patients. In conclusion, we demonstrated that differential DNA methylation in the arterial tissue of CKD patients represents a potential mediator of arterial pathology and may be used to uncover novel pathways in the genesis of CKD-associated complications.


Epigenome , Renal Insufficiency, Chronic , Arteries , DNA , DNA Methylation , Epigenesis, Genetic , Humans
7.
J Rheumatol ; 47(11): 1668-1677, 2020 11 01.
Article En | MEDLINE | ID: mdl-32173657

OBJECTIVE: Scleroderma renal crisis (SRC) is a life-threatening complication of systemic sclerosis (SSc) strongly associated with anti-RNA polymerase III antibody (ARA) autoantibodies. We investigated genetic susceptibility and altered protein expression in renal biopsy specimens in ARA-positive patients with SRC. METHODS: ARA-positive patients (n = 99) with at least 5 years' follow-up (49% with a history of SRC) were selected from a well characterized SSc cohort (n = 2254). Cases were genotyped using the Illumina Human Omni-express chip. Based on initial regression analysis, 9 single-nucleotide polymorphisms (SNP) were chosen for validation in a separate cohort of 256 ARA-positive patients (40 with SRC). Immunostaining of tissue sections from SRC or control kidney was used to quantify expression of candidate proteins based upon genetic analysis of the discovery cohort. RESULTS: Analysis of 641,489 SNP suggested association of POU2F1 (rs2093658; P = 1.98 × 10-5), CTNND2 (rs1859082; P = 5.58 × 10-5), HECW2 (rs16849716; P = 1.2 × 10-4), and GPATCH2L (rs935332; P = 4.92 × 10-5) with SRC. Further, the validation cohort showed an association between rs935332 within the GPATCH2L region, with SRC (P = 0.025). Immunostaining of renal biopsy sections showed increased tubular expression of GPATCH2L (P = 0.026) and glomerular expression of CTNND2 (P = 0.026) in SRC samples (n = 8) compared with normal human kidney controls (n = 8), despite absence of any genetic replication for the associated SNP. CONCLUSION: Increased expression of 2 candidate proteins, GPATCH2L and CTNND2, in SRC compared with control kidney suggests a potential role in pathogenesis of SRC. For GPATCH2L, this may reflect genetic susceptibility in ARA-positive patients with SSc based upon 2 independent cohorts.


Acute Kidney Injury , Scleroderma, Localized , Scleroderma, Systemic , Autoantibodies , Humans , RNA Polymerase III/immunology , Scleroderma, Localized/immunology , Scleroderma, Systemic/immunology , Ubiquitin-Protein Ligases
8.
Curr Opin Rheumatol ; 30(6): 581-587, 2018 11.
Article En | MEDLINE | ID: mdl-30074511

PURPOSE OF REVIEW: The persistence of myofibroblasts is a key feature of fibrosis and in fibrotic diseases including scleroderma. This review evaluates the emerging concepts of the origins and cell populations that contribute to myofibroblasts and the molecular mechanisms that govern phenotypic conversion and that highlight opportunities for new interventional treatments in scleroderma. RECENT FINDINGS: Studies have defined heterogeneity in fibroblast-like cells that can develop into myofibroblast in normal wound healing, scarring and fibrosis. Characterizing these distinct cell populations and their behaviour has been a key focus. In addition, the overarching impact of epigenetic regulation of genes associated with inflammatory responses, cell signalling and cell communication and the extracellular matrix (ECM) has provided important insights into the formation of myofibroblast and their function. Important new studies include investigations into the relationship between inflammation and myofibroblast production and further evidence has been gathered that reveal the importance of ECM microenvironment, biomechanical sensing and mechanotransduction. SUMMARY: This review highlights our current understanding and outlines the increasing complexity of the biological processes that leads to the appearance of the myofibroblast in normal functions and in diseased tissues. We also focus on areas of special interest in particular, studies that have therapeutic potential in fibrosis and scleroderma.


Epigenesis, Genetic , Genetic Therapy/methods , Myofibroblasts/pathology , Scleroderma, Systemic , Cell Differentiation , Humans , Mechanotransduction, Cellular , Scleroderma, Systemic/genetics , Scleroderma, Systemic/pathology , Scleroderma, Systemic/therapy , Signal Transduction
9.
Arthritis Rheumatol ; 70(6): 920-931, 2018 06.
Article En | MEDLINE | ID: mdl-29342503

OBJECTIVE: NKX2-5 is a homeobox transcription factor that is required for the formation of the heart and vessels during development, with significant postnatal down-regulation and reactivation in disease states, characterized by vascular remodeling. The purpose of this study was to investigate mechanisms that activate NKX2-5 expression in diseased vessels, such as systemic sclerosis (scleroderma; SSc)-associated pulmonary hypertension (PH), and to identify genetic variability that potentially underlies susceptibility to specific vascular complications. METHODS: We explored NKX2-5 expression in biopsy samples from patients with SSc-associated PH and in pulmonary artery smooth muscle cells (PASMCs) from patients with scleroderma. Disease-associated putative functional single-nucleotide polymorphisms (SNPs) at the NKX2-5 locus were cloned and studied in reporter gene assays. SNP function was further examined through protein-DNA binding assays, chromatin immunoprecipitation assays, and RNA silencing analyses. RESULTS: Increased NKX2-5 expression in biopsy samples from patients with SSc-associated PH was localized to remodeled vessels and PASMCs. Meta-analysis of 2 independent scleroderma cohorts revealed an association of rs3131917 with scleroderma (P = 0.029). We demonstrated that disease-associated SNPs are located in a novel functional enhancer, which increases NKX2-5 transcriptional activity through the binding of GATA-6, c-Jun, and myocyte-specific enhancer factor 2C. We also characterized an activator/coactivator transcription-enhancer factor domain 1 (TEAD1)/Yes-associated protein 1 (YAP1) complex, which was bound at rs3095870, another functional SNP, with TEAD1 binding the risk allele and activating the transcription of NKX2-5. CONCLUSION: NKX2-5 is genetically associated with scleroderma, pulmonary hypertension, and fibrosis. Functional evidence revealed a regulatory mechanism that results in NKX2-5 transcriptional activation in PASMCs through the interaction of an upstream promoter and a novel downstream enhancer. This mechanism can act as a model for NKX2-5 activation in cardiovascular disease characterized by vascular remodeling.


Homeobox Protein Nkx-2.5/metabolism , Hypertension, Pulmonary/genetics , Scleroderma, Systemic/genetics , Vascular Remodeling/genetics , Adult , Cohort Studies , Enhancer Elements, Genetic , Female , Genetic Predisposition to Disease , Humans , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/pathology , Male , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Pulmonary Artery/cytology , Scleroderma, Systemic/complications , Scleroderma, Systemic/pathology , Spain , Transcription, Genetic/genetics , United Kingdom
10.
Mol Biol Cell ; 29(2): 84-95, 2018 01 15.
Article En | MEDLINE | ID: mdl-29142074

Fibroblast differentiation is a key cellular process that underlies the process of fibrosis, a deadly complication of fibrotic diseases like scleroderma (SSc). This transition coincides with the overproduction of collagen type I (COL1) and other extracellular matrix proteins. High-level expression of the collagen type 1α2 subunit (COL1A2), requires the engagement of a far-upstream enhancer, whose activation is strongly dependent on the AP1 factor JunB. We now report that STAT3 also binds the COL1A2 enhancer and is essential for RNA polymerase recruitment, without affecting JunB binding. STAT3 is required for the increased COL1A2 expression observed in myofibroblasts. We also report that TGFß partially activates STAT3 and show that inhibiting STAT3 potently blocks TGFß signaling, matrix remodeling, and TGFß-induced myofibroblast differentiation. Activation of STAT3 with IL6 transsignaling alone, however, only increased COL1A2 protein expression, leaving COL1A2 mRNA levels unchanged. Our results suggest that activated STAT3 is not the limiting factor for collagen enhancer activation in human lung fibroblasts. Yet, a certain threshold level of STAT3 activity is essential to support activation of the COL1A2 enhancer and TGFß signaling in fibroblasts. We propose that STAT3 operates at the posttranscriptional as well as the transcriptional level.


Collagen Type I/biosynthesis , Myofibroblasts/cytology , STAT3 Transcription Factor/physiology , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism , Cell Differentiation , Cells, Cultured , Enhancer Elements, Genetic , Fibrosis , Gene Expression Regulation , Humans , Interleukin-6/pharmacology , Lung/cytology , Signal Transduction
11.
JCI Insight ; 1(12): e87001, 2016 08 04.
Article En | MEDLINE | ID: mdl-27699226

Mucous membrane pemphigoid (MMP) is a systemic mucosal scarring disease, commonly causing blindness, for which there is no antifibrotic therapy. Aldehyde dehydrogenase family 1 (ALDH1) is upregulated in both ocular MMP (OMMP) conjunctiva and cultured fibroblasts. Application of the ALDH metabolite, retinoic acid (RA), to normal human conjunctival fibroblasts in vitro induced a diseased phenotype. Conversely, application of ALDH inhibitors, including disulfiram, to OMMP fibroblasts in vitro restored their functionality to that of normal controls. ALDH1 is also upregulated in the mucosa of the mouse model of scarring allergic eye disease (AED), used here as a surrogate for OMMP, in which topical application of disulfiram decreased fibrosis in vivo. These data suggest that progressive scarring in OMMP results from ALDH/RA fibroblast autoregulation, that the ALDH1 subfamily has a central role in immune-mediated ocular mucosal scarring, and that ALDH inhibition with disulfiram is a potential and readily translatable antifibrotic therapy.


Aldehyde Dehydrogenase/antagonists & inhibitors , Cicatrix/prevention & control , Disulfiram/pharmacology , Mucous Membrane/pathology , Adult , Aged , Aged, 80 and over , Animals , Cells, Cultured , Conjunctiva/drug effects , Conjunctiva/physiopathology , Female , Fibroblasts/drug effects , Fibrosis , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Pemphigoid, Benign Mucous Membrane , Tretinoin
12.
Data Brief ; 8: 1377-80, 2016 Sep.
Article En | MEDLINE | ID: mdl-27583344

This data article contains complementary figures related to the research article entitled, "Transforming growth factor-ß-induced CUX1 isoforms are associated with fibrosis in systemic sclerosis lung fibroblasts" (Ikeda et al. (2016) [2], http://dx.doi.org/10.1016/j.bbrep.2016.06.022), which presents that TGF-ß increased CUX1 binding in the proximal promoter and enhancer of the COL1A2 and regulated COL1. Further, in the scleroderma (SSc) lung and diffuse alveolar damage lung sections, CUX1 localized within the α- smooth muscle actin (α-SMA) positive cells (Fragiadaki et al., 2011) [1], "High doses of TGF-beta potently suppress type I collagen via the transcription factor CUX1" (Ikeda et al., 2016) [2]. Here we show that CUX1 isoforms are localized within α-smooth muscle actin-positive cells in SSc skin and idiopathic pulmonary fibrosis (IPF) lung tissue sections. In particular, at the granular and prickle cell layers in the SSc skin sections, CUX1 and α-SMA are co-localized. In addition, at the fibrotic loci in the IPF lung tissue sections, CUX1 localized within the α-smooth muscle actin (α-SMA) positive cells.

13.
EMBO Mol Med ; 8(7): 729-44, 2016 07.
Article En | MEDLINE | ID: mdl-27226027

ER stress results in activation of the unfolded protein response and has been implicated in the development of fibrotic diseases. In this study, we show that inhibition of the ER stress-induced IRE1α signaling pathway, using the inhibitor 4µ8C, blocks TGFß-induced activation of myofibroblasts in vitro, reduces liver and skin fibrosis in vivo, and reverts the fibrotic phenotype of activated myofibroblasts isolated from patients with systemic sclerosis. By using IRE1α(-/-) fibroblasts and expression of IRE1α-mutant proteins lacking endoribonuclease activity, we confirmed that IRE1α plays an important role during myofibroblast activation. IRE1α was shown to cleave miR-150 and thereby to release the suppressive effect that miR-150 exerted on αSMA expression through c-Myb. Inhibition of IRE1α was also demonstrated to block ER expansion through an XBP-1-dependent pathway. Taken together, our results suggest that ER stress could be an important and conserved mechanism in the pathogenesis of fibrosis and that components of the ER stress pathway may be therapeutically relevant for treating patients with fibrotic diseases.


Endoplasmic Reticulum Stress , Endoribonucleases/metabolism , Fibrosis/pathology , MicroRNAs/metabolism , Protein Serine-Threonine Kinases/metabolism , X-Box Binding Protein 1/metabolism , Animals , Cells, Cultured , Humans , Liver/pathology , Mice , Skin/pathology , Unfolded Protein Response
14.
Biochem Biophys Rep ; 7: 246-252, 2016 Sep.
Article En | MEDLINE | ID: mdl-28955913

In the enhancer region of the human type I collagen alpha 2 (COL1A2) gene, we identified cis-elements for the transcription factor CUX1. However, the role of CUX1 in fibrosis remains unclear. Here we investigated the role of CUX1 in the regulation of COL1 expression and delineated the mechanisms underlying the regulation of COL1A2 expression by CUX1 in systemic sclerosis (SSc) lung fibroblasts. The binding of CUX1 to the COL1A2 enhancer region was assessed using electrophoretic mobility shift assays after treatment with transforming growth factor (TGF)-ß. Subsequently, the protein expression levels of CUX1 isoforms were determined using Western blotting. Finally, the expression levels of COL1 and fibrosis-related cytokines, including CTGF, ET-1, Wnt1 and ß-catenin were determined. The binding of CUX1 isoforms to the COL1A2 enhancer region increased after TGF-ß treatment. TGF-ß also increased the protein levels of the CUX1 isoforms p200, p150, p110, p75, p30 and p28. Moreover, SSc lung fibroblasts showed higher levels of CUX1 isoforms than normal lung fibroblasts, and treatment of SSc lung fibroblasts with a cathepsin L inhibitor (IW-CHO) decreased COL1 protein expression and reduced cell size, as measured using immunocytochemistry. In SSc and diffuse alveolar damage lung tissue sections, CUX1 localised within α-smooth muscle actin-positive cells. Our results suggested that CUX1 isoforms play vital roles in connective tissue deposition during wound repair and fibrosis.

15.
PLoS One ; 10(5): e0126015, 2015.
Article En | MEDLINE | ID: mdl-25955164

In scleroderma (systemic sclerosis, SSc), persistent activation of myofibroblast leads to severe skin and organ fibrosis resistant to therapy. Increased mechanical stiffness in the involved fibrotic tissues is a hallmark clinical feature and a cause of disabling symptoms. Myocardin Related Transcription Factor-A (MRTF-A) is a transcriptional co-activator that is sequestered in the cytoplasm and translocates to the nucleus under mechanical stress or growth factor stimulation. Our objective was to determine if MRTF-A is activated in the disease microenvironment to produce more extracellular matrix in progressive SSc. Immunohistochemistry studies demonstrate that nuclear translocation of MRTF-A in scleroderma tissues occurs in keratinocytes, endothelial cells, infiltrating inflammatory cells, and dermal fibroblasts, consistent with enhanced signaling in multiple cell lineages exposed to the stiff extracellular matrix. Inhibition of MRTF-A nuclear translocation or knockdown of MRTF-A synthesis abolishes the SSc myofibroblast enhanced basal contractility and synthesis of type I collagen and inhibits the matricellular profibrotic protein, connective tissue growth factor (CCN2/CTGF). In MRTF-A null mice, basal skin and lung stiffness was abnormally reduced and associated with altered fibrillar collagen. MRTF-A has a role in SSc fibrosis acting as a central regulator linking mechanical cues to adverse remodeling of the extracellular matrix.


Connective Tissue Growth Factor/genetics , Fibrosis/genetics , Scleroderma, Systemic/genetics , Trans-Activators/genetics , Animals , Cell Lineage , Collagen Type I/biosynthesis , Collagen Type I/genetics , Connective Tissue Growth Factor/metabolism , Drug Resistance/genetics , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Fibrosis/pathology , Humans , Mice , Mice, Knockout , Myofibroblasts/metabolism , Myofibroblasts/pathology , Signal Transduction , Trans-Activators/antagonists & inhibitors , Trans-Activators/metabolism
16.
Arthritis Rheumatol ; 67(1): 243-53, 2015 Jan.
Article En | MEDLINE | ID: mdl-25303440

OBJECTIVE: The excessive deposition of extracellular matrix, including type I collagen, is a key aspect in the pathogenesis of connective tissue diseases such as systemic sclerosis (SSc; scleroderma). To further our understanding of the mechanisms governing the dysregulation of type I collagen production in SSc, we investigated the role of the activator protein 1 (AP-1) family of transcription factors in regulating COL1A2 transcription. METHODS: The expression and nuclear localization of AP-1 family members (c-Jun, JunB, JunD, Fra-1, Fra-2, and c-Fos) were examined by immunohistochemistry and Western blotting in dermal biopsy specimens and explanted skin fibroblasts from patients with diffuse cutaneous SSc and healthy controls. Gene activation was determined by assessing the interaction of transcription factors with the COL1A2 enhancer using transient transfection of reporter gene constructs, electrophoretic mobility shift assays, chromatin immunoprecipitation analysis, and RNA interference involving knockdown of individual AP-1 family members. Inhibition of fibroblast mammalian target of rapamycin (mTOR), Akt, and glycogen synthase kinase 3ß (GSK-3ß) signaling pathways was achieved using small-molecule pharmacologic inhibitors. RESULTS: Binding of JunB to the COL1A2 enhancer was observed, with its coalescence directed by activation of gene transcription through the proximal promoter. Knockdown of JunB reduced enhancer activation and COL1A2 expression in response to transforming growth factor ß. In SSc dermal fibroblasts, increased mTOR/Akt signaling was associated with inactivation of GSK-3ß, leading to blockade of JunB degradation and, thus, constitutively high expression of JunB. CONCLUSION: In patients with SSc, the accumulation of JunB resulting from altered mTOR/Akt signaling and a failure of proteolytic degradation underpins the aberrant overexpression of type I collagen. These findings identify JunB as a potential target for antifibrotic therapy in SSc.


Collagen Type I/metabolism , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Skin/metabolism , Skin/pathology , Transcription Factors/metabolism , Biopsy , Case-Control Studies , Cells, Cultured , Fibrosis/metabolism , Fibrosis/pathology , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Proto-Oncogene Proteins c-akt/metabolism , Scleroderma, Systemic/physiopathology , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism , Transcription Factor AP-1/metabolism
17.
J Biomed Res ; 28(1): 25-39, 2014 Jan.
Article En | MEDLINE | ID: mdl-24474961

Extracellular matrix (ECM) within the vascular network provides both a structural and regulatory role. The ECM is a dynamic composite of multiple proteins that form structures connecting cells within the network. Blood vessels are distended by blood pressure and, therefore, require ECM components with elasticity yet with enough tensile strength to resist rupture. The ECM is involved in conducting mechanical signals to cells. Most importantly, ECM regulates cellular function through chemical signaling by controlling activation and bioavailability of the growth factors. Cells respond to ECM by remodeling their microenvironment which becomes dysregulated in vascular diseases such hypertension, restenosis and atherosclerosis. This review examines the cellular and ECM components of vessels, with specific emphasis on the regulation of collagen type I and implications in vascular disease.

18.
J Cell Sci ; 126(Pt 10): 2164-75, 2013 May 15.
Article En | MEDLINE | ID: mdl-23525012

Connective tissue growth factor (CTGF) plays an important role in the pathogenesis of chronic fibrotic diseases. However, the mechanism by which paracrine effects of CTGF control the cell fate of neighboring epithelial cells is not known. In this study, we investigated the paracrine effects of CTGF overexpressed in fibroblasts of Col1a2-CTGF transgenic mice on epithelial cells of skin and lung. The skin and lungs of Col1a2-CTGF transgenic mice were examined for phenotypic markers of epithelial activation and differentiation and stimulation of signal transduction pathways. In addition to an expansion of the dermal compartment in Col1a2-CTGF transgenic mice, the epidermis was characterized by focal hyperplasia, and basal cells stained positive for αSMA, Snail, S100A4 and Sox9, indicating that these cells had undergone a change in their genetic program. Activation of phosphorylated p38 and phosphorylated Erk1/2 was observed in the granular and cornified layers of the skin. Lung fibrosis was associated with a marked increase in cells co-expressing epithelial and mesenchymal markers in the lesional and unaffected lung tissue of Col1a2-CTGF mice. In epithelial cells treated with TGFß, CTGF-specific siRNA-mediated knockdown suppressed Snail, Sox9, S100A4 protein levels and restored E-cadherin levels. Both adenoviral expression of CTGF in epithelial cells and treatment with recombinant CTGF induced EMT-like morphological changes and expression of α-SMA. Our in vivo and in vitro data supports the notion that CTGF expression in mesenchymal cells in the skin and lungs can cause changes in the differentiation program of adjacent epithelial cells. We speculate that these changes might contribute to fibrogenesis.


Connective Tissue Growth Factor/metabolism , Epithelial-Mesenchymal Transition , Fibroblasts/physiology , Focal Epithelial Hyperplasia/physiopathology , Pulmonary Fibrosis/physiopathology , Animals , Biomarkers/metabolism , Cell Differentiation/genetics , Cells, Cultured , Collagen Type I/genetics , Connective Tissue Growth Factor/genetics , Epithelial-Mesenchymal Transition/genetics , Lung/pathology , MAP Kinase Signaling System/genetics , Mice , Mice, Transgenic , Paracrine Communication , RNA, Small Interfering/genetics , Signal Transduction/genetics , Skin/pathology , Transforming Growth Factor beta/immunology , Transgenes/genetics
19.
Vascul Pharmacol ; 58(3): 189-93, 2013 Mar.
Article En | MEDLINE | ID: mdl-23380714

The CCN family comprise the products of six immediate-early response genes (Cyr61, Ctgf, Nov and Wisp1-3) and are multi-functional proteins, characterised by four discrete protein modules in which reside functional domains: an insulin-like growth factor binding protein-like module (IGFBP) but has low affinity for IGFBPs, a von Willebrand factor type C repeat module (VWC) which mediates integrin and growth factor binding, a thrombospondin type-1 repeat module (TSP-1), and a cysteine-knot-containing module (CT). These modules mediate a host of interactions such as growth factor binding, integrin recognition, and interaction(s) with heparin and proteoglycans (reviewed in Holbourn et al., 2008; Chen and Lau, 2009). The CCN family are involved in many normal and pathological cellular processes and have a plethora of functions including cell proliferation, angiogenesis, wound healing, and fibrogenesis, tumourigenesis. In addition, many roles have been described for CCN family members in the cardiovascular system (Table 1). The focus of this review is the role of connective tissue growth factor (CCN2, CTGF) in blood vessels and in vascular pathology.


Blood Vessels/physiology , Connective Tissue Growth Factor/metabolism , Vascular Diseases/physiopathology , Animals , Cardiovascular Physiological Phenomena , Cardiovascular System , Humans
20.
J Cell Commun Signal ; 5(3): 173-7, 2011 Aug.
Article En | MEDLINE | ID: mdl-21769684

The ability of TGFß1 to act as a potent pro-fibrotic mediator is well established, potently inducing the expression of fibrogenic genes including type I collagen (COL1A2) and CCN2. Previously we have shown elevated expression of the TGFß accessory receptor, endoglin on Systemic Sclerosis (SSc) dermal fibroblasts. Here we sought to assess the cell surface expression of the TGFß receptor complex on SSc dermal fibroblasts (SDF), and investigate their role in maintaining the elevated expression of CCN2. SDF exhibited elevated expression of the TGFß accessory receptors betaglycan/TGFßRIII and endoglin, but not type I or type II receptors. To determine the effect of altered receptor repertoire on TGFß responses, we investigated the effect of exogenous TGFß on expression of two pro-fibrotic genes. SDF exhibited higher basal expression of COL1A2 and CCN2 compared to healthy controls. TGFß induced a marked increase in the expression of these genes in normal dermal fibroblasts, whereas SDF exhibited only a modest increase. We next sought to determine if higher basal expression in SDF was a result of autocrine expression of TGFß. Surprisingly basal expression was not affected by a pan-neutralizing TGFß antibody. To explore if altered accessory receptor expression alone could account for these changes, we determined their effects on CCN2 promoter activity. Endoglin inhibited CCN2 promoter activity in response to TGFß. TGFßRIII alone or in combination with endoglin was sufficient to enhance basal CCN2 promoter activity. Thus TGFß accessory receptors may play a significant role in the altered expression of fibrogenic genes in SDF.

...