Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 252(Pt A): 825-834, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31202135

RESUMEN

The present study introduces a mechanically robust, sealable SPME sampler for the on-site sampling and extraction of a wide range of untargeted pollutants in environmental waters. Spray-coating and dip coating methodologies were used to coat the surfaces of six stainless steel bolts with a layer of HLB/PAN particles, which served as the extractive substrate in the proposed device. In addition, this sampler was designed to withstand rough handling, long storage times, and various environmental conditions. In order to identify whether the sampler was able to stabilize extracted compounds for long periods of time, the effects of storage time and temperature were evaluated. The results of these tests showed no significant differences in the quantity and quality of the extracted chemicals following 12 days storage at room temperature, thus confirming the device's suitability for use at sampling sites that are far away from the laboratory facilities. The proposed device was also used to perform extraction and untargeted analyses of river waters in five different geographical locations. The constituent chemicals in the samplers were analyzed and determined using high-resolution HPLC-Orbitrap MS. Toxin and Toxin-Target Database was used as a reference database for toxins and environmental contaminants. Ultimately, over 80 tentative chemicals with widely varying hydrophobicities ranging within -2.43 < logP <11.9-including drugs, metabolites, wide ranges of toxins, pesticide, and insecticides-were identified in the samplers used in the different rivers. The log P values for the tentative analytes confirmed that the introduced device is suitable for the extraction and trace analysis of wide ranges of targeted and untargeted pollutants.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Insecticidas/análisis , Ríos/química , Toxinas Biológicas/análisis , Contaminantes Químicos del Agua/análisis , Bencenosulfonatos , Cromatografía Líquida de Alta Presión , Interacciones Hidrofóbicas e Hidrofílicas , Plaguicidas/análisis
2.
Sci Rep ; 8(1): 1167, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29348436

RESUMEN

In vitro high-throughput non-depletive quantitation of chemicals in biofluids is of growing interest in many areas. Some of the challenges facing researchers include the limited volume of biofluids, rapid and high-throughput sampling requirements, and the lack of reliable methods. Coupled to the above, growing interest in the monitoring of kinetics and dynamics of miniaturized biosystems has spurred the demand for development of novel and revolutionary methodologies for analysis of biofluids. The applicability of solid-phase microextraction (SPME) is investigated as a potential technology to fulfill the aforementioned requirements. As analytes with sufficient diversity in their physicochemical features, nicotine, N,N-Diethyl-meta-toluamide, and diclofenac were selected as test compounds for the study. The objective was to develop methodologies that would allow repeated non-depletive sampling from 96-well plates, using 100 µL of sample. Initially, thin film-SPME was investigated. Results revealed substantial depletion and consequent disruption in the system. Therefore, new ultra-thin coated fibers were developed. The applicability of this device to the described sampling scenario was tested by determining the protein binding of the analytes. Results showed good agreement with rapid equilibrium dialysis. The presented method allows high-throughput analysis using small volumes, enabling fast reliable free and total concentration determinations without disruption of system equilibrium.

3.
Anal Chim Acta ; 999: 69-75, 2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29254576

RESUMEN

Coated Blade Spray (CBS) is a technology that efficiently integrates sample preparation and direct coupling to mass spectrometry (MS) on a single device. In this article, we present CBS-tandem mass spectrometry (CBS-MS/MS) as a novel tool for the rapid and simultaneous determination of four commonly used immunosuppressive drugs (ISDs) in whole blood: tacrolimus (TAC) and cyclosporine-A (CycA), which are calcineurin inhibitors; and sirolimus (SIR) and everolimus (EVR), which are both mTOR (mechanistic target of rapamycin) inhibitors. Given that CBS extracts via free concentration, analytes that are largely bound to plasma proteins or red blood cells provide considerably lower extraction recovery rates. Therefore, we defy the solventless philosophy of SPME-based techniques, like CBS, by performing the analyte-enrichment step via direct immersion in a solvent-modified matrix. The assay was linear within the evaluated range of concentrations (between 1 and 100 ng/mL for EVR/SIR/TAC and 10-1000 ng/mL for CycA), and the limits of quantification were determined to be 10 ng/mL for CycA and 1 ng/mL for EVR/SIR/TAC. Good accuracy (87-119%) and linearity (r2 ≥ 0.99) were attained over the evaluated range for all ISDs. Interassay imprecision (CV) determined from incurred sample reanalysis was ≤10% for all ISDs. Our method was validated using Liquichek™ whole blood immunosuppressant quality control (QC) standards purchased from Bio-Rad. Concentrations determined by CBS-MS/MS were inside the range specified by Bio-Rad and within 15% of the expected mean value for all ISDs at all QC levels. Furthermore, the effect of different hematocrit levels (20, 45, and 70%) in the entire calibration range was carefully studied. No statistical differences (RSD ≤ 7%) in the calibration curve slopes of ISDs in blood were observed. CBS offers a simpler workflow than that of traditional methods; it eliminates the need for chromatographic separation and provides a clean extract that allows for long-term MS instrumental operation with minimal maintenance. Additionally, because CBS integrates all analytical steps into one device, it eliminates the risk of instrumental carry-over and can be used as a low-cost disposable device for sample preparation and analysis. Fully-automated sample preparation simplifies the method and allows for total analysis times as short as 3 min with turn-around times of less than 90 min.


Asunto(s)
Ciclosporina/sangre , Everolimus/sangre , Inmunosupresores/sangre , Sirolimus/sangre , Tacrolimus/sangre , Espectrometría de Masas en Tándem/métodos , Fraccionamiento Químico/instrumentación , Fraccionamiento Químico/métodos , Monitoreo de Drogas/economía , Monitoreo de Drogas/instrumentación , Monitoreo de Drogas/métodos , Diseño de Equipo , Humanos , Límite de Detección , Espectrometría de Masas en Tándem/economía , Espectrometría de Masas en Tándem/instrumentación , Factores de Tiempo
4.
Sci Rep ; 7(1): 16104, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29170449

RESUMEN

This study demonstrates the quantitative capabilities of coated blade spray (CBS) mass spectrometry (MS) for the concomitant analysis of multiple target substances in biofluid spots. In CBS-MS the analytes present in a given sample are first isolated and enriched in the thin coating of the CBS device. After a quick rinsing of the blade surface, as to remove remaining matrix, the analytes are quickly desorbed with the help of a solvent and then directly electrosprayed into the MS analyzer. Diverse pain management drugs, controlled substances, and therapeutic medications were successfully determined using only 10 µL of biofluid, with limits of quantitation in the low/sub ng·mL-1 level attained within 7 minutes.


Asunto(s)
Espectrometría de Masas/métodos , Análisis Químico de la Sangre , Humanos , Plasma/química , Estándares de Referencia , Espectrometría de Masas en Tándem
5.
Environ Sci Technol ; 51(21): 12566-12572, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28990769

RESUMEN

The widespread use of pharmaceuticals in both human and animal populations, and the resultant contamination of surface waters from the outflow of water treatment facilities is an issue of growing concern. This has raised the need for analytical methods that can both perform rapid sample analysis and overcome the limitations of conventional analysis procedures, such as multistep workflows and tedious procedures. Coated blade spray (CBS) is a solid-phase microextraction based technique that enables the direct-to-mass-spectrometry analysis of extracted compounds via the use of limited organic solvent to desorb analytes and perform electrospray ionization. This paper documents how CBS can be applied for the concomitant tandem mass spectrometric (MS/MS) analysis of nine pharmaceuticals in treated wastewater. The total analysis times of less than 11 min provided limits of detection lower than 50 ng L-1 for all target compounds in river water. The CBS methodology was then compared to a conventional solid-phase extraction technique for the analysis of the final effluent of six wastewater treatment facilities. The experimental results strongly suggest that CBS offers scientists a viable alternative method for analyzing water samples that is both rapid and relatively solvent-free.


Asunto(s)
Preparaciones Farmacéuticas , Aguas Residuales , Contaminantes Químicos del Agua , Agua Dulce , Humanos , Extracción en Fase Sólida , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
6.
Anal Chem ; 89(16): 8421-8428, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28715206

RESUMEN

Most contemporary methods of screening and quantitating controlled substances and therapeutic drugs in biofluids typically require laborious, time-consuming, and expensive analytical workflows. In recent years, our group has worked toward developing microextraction (µe)-mass spectrometry (MS) technologies that merge all of the tedious steps of the classical methods into a simple, efficient, and low-cost methodology. Unquestionably, the automation of these technologies allows for faster sample throughput, greater reproducibility, and radically reduced analysis times. Coated blade spray (CBS) is a µe technology engineered for extracting/enriching analytes of interest in complex matrices, and it can be directly coupled with MS instruments to achieve efficient screening and quantitative analysis. In this study, we introduced CBS as a technology that can be arranged to perform either rapid diagnostics (single vial) or the high-throughput (96-well plate) analysis of biofluids. Furthermore, we demonstrate that performing 96-CBS extractions at the same time allows the total analysis time to be reduced to less than 55 s per sample. Aiming to validate the versatility of CBS, substances comprising a broad range of molecular weights, moieties, protein binding, and polarities were selected. Thus, the high-throughput (HT)-CBS technology was used for the concomitant quantitation of 18 compounds (mixture of anabolics, ß-2 agonists, diuretics, stimulants, narcotics, and ß-blockers) spiked in human urine and plasma samples. Excellent precision (∼2.5%), accuracy (≥90%), and linearity (R2 ≥ 0.99) were attained for all the studied compounds, and the limits of quantitation (LOQs) were within the range of 0.1 to 10 ng·mL-1 for plasma and 0.25 to 10 ng·mL-1 for urine. The results reported in this paper confirm CBS's great potential for achieving subsixty-second analyses of target compounds in a broad range of fields such as those related to clinical diagnosis, food, the environment, and forensics.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2 , Antagonistas Adrenérgicos beta , Antibacterianos , Agonistas de Receptores Adrenérgicos beta 2/sangre , Agonistas de Receptores Adrenérgicos beta 2/orina , Antagonistas Adrenérgicos beta/sangre , Antagonistas Adrenérgicos beta/orina , Antibacterianos/sangre , Antibacterianos/orina , Ensayos Analíticos de Alto Rendimiento , Humanos , Espectrometría de Masas , Microextracción en Fase Sólida
7.
Anal Chem ; 89(13): 7240-7248, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28540722

RESUMEN

The direct interface of microextraction technologies to mass spectrometry (MS) has unquestionably revolutionized the speed and efficacy at which complex matrices are analyzed. Solid Phase Micro Extraction-Transmission Mode (SPME-TM) is a technology conceived as an effective synergy between sample preparation and ambient ionization. Succinctly, the device consists of a mesh coated with polymeric particles that extracts analytes of interest present in a given sample matrix. This coated mesh acts as a transmission-mode substrate for Direct Analysis in Real Time (DART), allowing for rapid and efficient thermal desorption/ionization of analytes previously concentrated on the coating, and dramatically lowering the limits of detection attained by sole DART analysis. In this study, we present SPME-TM as a novel tool for the ultrafast enrichment of pesticides present in food and environmental matrices and their quantitative determination by MS via DART ionization. Limits of quantitation in the subnanogram per milliliter range can be attained, while total analysis time does not exceed 2 min per sample. In addition to target information obtained via tandem MS, retrospective studies of the same sample via high-resolution mass spectrometry (HRMS) were accomplished by thermally desorbing a different segment of the microextraction device.


Asunto(s)
Contaminación de Alimentos/análisis , Plaguicidas/análisis , Microextracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Contaminación Química del Agua/análisis , Animales , Bebidas/análisis , Citrus sinensis/química , Límite de Detección , Ríos/química , Vitis/química
8.
Anal Chem ; 89(15): 8021-8026, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28548491

RESUMEN

To date, solid-phase microextraction (SPME) fibers used for in vivo bioanalysis can be too fragile and flexible, which limits suitability for direct tissue sampling. As a result, these devices often require a sheathing needle to prepuncture robust sample matrixes and protect the extraction phase from mechanical damage. To address this limitation, a new SPME device is herein presented which incorporates an extraction phase recessed into the body of a solid needle. This device requires no additional support or shielding during puncture events through protective tissue. The presented device was thoroughly tested, being fired at 90 m·s-1 through fish scales, forced through vial septa, and employed in a targeted study of polyunsaturated fatty acids in salmon where the protective outer skin was repetitively punctured during sampling. Finally, the recessed SPME device was applied to an on-site application for the tissue analysis of wild muskellunge. With this advancement, rapid, minimally invasive, and easily executed in vivo SPME is now possible opening the door to near endless sampling opportunities.

9.
J Pharm Biomed Anal ; 144: 106-111, 2017 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-28318747

RESUMEN

Voriconazole is a triazole broad-spectrum antifungal medication often used to treat fungal infections caused by Aspergillus and Fusarium species. One of the main challenges associated with the implementation of this medication is its narrow therapeutic concentration range, demonstrating toxicity at concentrations above 6µg/mL and limited efficacy at concentrations below 2µg/mL. As a result, methodologies which permit the rapid and accurate quantitation of voriconazole in patients are highly desirable. In this work two different approaches based on coated blade spray directly coupled to mass spectrometry (CBS-MS) are introduced; each enabling the quantitation of voriconazole in plasma samples with a simple and fast sample preparation and no chromatographic step. The first approach involves a rapid extraction (1min) of the target analyte from 300µL of human plasma using conventional laboratory vessels (e.g. vial, 96-well plate). Alternatively, the second strategy consists of a 2min extraction from a plasma droplet (10µL) placed on the coated area of the blade. Both procedures were successfully validated and good linearity (R2≥0.998), accuracy (91-122%) and precision (<8%) were attained in the concentration range evaluated (0.1-50µg/mL). Moreover, very good results in terms of relative matrix effects were obtained given that the slopes of the calibration curves constructed in five different plasma lots exhibited relative standard deviation (RSD) values below 7%. Herein we demonstrated that CBS-MS is a technology suitable for the ultra-fast determination of voriconazole in human plasma samples. Indeed, the proposed methodology can be easily used either for routine drug monitoring or for in vitro pharmacokinetic studies in applications where very small sample volumes are available and great temporal resolution is needed.


Asunto(s)
Voriconazol/sangre , Antifúngicos , Cromatografía Líquida de Alta Presión , Monitoreo de Drogas , Humanos , Espectrometría de Masas , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
10.
Mar Pollut Bull ; 112(1-2): 58-64, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27575397

RESUMEN

Halogenated natural products in biota of the Baltic Sea include bromoanisoles (BAs) and methoxylated bromodiphenyl ethers (MeO-BDEs). We identified biogenic 6-MeO-BDE47 and 2'-MeO-BDE68 in Baltic water and air for the first time using gas chromatography - high resolution mass spectrometry. Partial pressures in air were related to temperature by: log p/Pa=m/T(K)+b. We determined Henry's law constants (HLCs) of 2,4-dibromoanisole (2,4-DiBA) and 2,4,6-tribromoanisole (2,4,6-TriBA) from 5 to 30°C and revised our assessment of gas exchange in the northern Baltic. The new water/air fugacity ratios (FRs) were lower, but still indicated net volatilization in May-June for 2,4-DiBA and May - September for 2,4,6-TriBA. The net flux (negative) of BAs from Bothnian Bay (38,000km2) between May - September was revised from -1319 to -532kg. FRs of MeO-BDEs were >1, suggesting volatilization, although this is tentative due to uncertainties in their HLCs and binding to dissolved organic carbon.


Asunto(s)
Contaminantes Atmosféricos/análisis , Anisoles/análisis , Monitoreo del Ambiente/métodos , Éteres Difenilos Halogenados/análisis , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Países Bálticos , Monitoreo del Ambiente/instrumentación , Cromatografía de Gases y Espectrometría de Masas , Océanos y Mares , Estaciones del Año
11.
Anal Chem ; 88(13): 6859-66, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27292013

RESUMEN

Solid phase microextraction (SPME) on-fiber derivatization methods have facilitated the achievement of lower detection limits and targeted analysis of various substances that exhibit poor chromatographic behavior, thermal instability, or high reactivity while limiting the use of organic solvents. However, previously developed on-fiber derivatization methods have been hindered by poor loading reproducibility and standard lifetime due to derivatization reagent reactivity. In addition, this reactivity often results in these reagents demonstrating toxic effects, complicating handling and standard formulation. To address this, a reusable standard gas generating vial containing pentafluorophenyl hydrazine (PFPH) has been developed. With this development, SPME fibers can now be reproducibly loaded with derivatization reagent, from an easy to use and safe platform. Validation of the vial using C4-C9 linear aldehyde standards as target analytes demonstrated intrabatch vial reproducibility (2% relative standard deviation (RSD), n = 4), along with PFPH headspace stability over a period of 11 weeks, facilitating reduced reagent consumption due to standard longevity. In addition, reproducibility of the derivatization reaction was observed over 1 week (RSD < 9%), and the linear concentration range was evaluated using headspace extractions from aqueous aldehyde solutions (R(2) > 0.996, 10-200 ppb v/v). Finally, the PFPH-generating vial was applied to the monitoring of volatile aldehydes generated during meat spoilage, as well as an on-site application where the free and total concentration of formaldehyde was determined in car exhaust using a portable GC/MS. To the best of our knowledge, the standard gas generating vial proposed in this work is the first documented device for the long-term storage of reusable headspace standards for a reactive, toxic, and otherwise unstable derivatization reagent standard.

12.
Chemosphere ; 156: 204-211, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27179237

RESUMEN

Polydimethylsiloxane (PDMS) shows promise for use as a passive air sampler (PAS) for semi-volatile organic compounds (SVOCs). To use PDMS as a PAS, knowledge of its chemical-specific partitioning behaviour and time to equilibrium is needed. Here we report on the effectiveness of two approaches for estimating the partitioning properties of polydimethylsiloxane (PDMS), values of PDMS-to-air partition ratios or coefficients (KPDMS-Air), and time to equilibrium of a range of SVOCs. Measured values of KPDMS-Air, Exp' at 25 °C obtained using the gas chromatography retention method (GC-RT) were compared with estimates from a poly-parameter free energy relationship (pp-FLER) and a COSMO-RS oligomer-based model. Target SVOCs included novel flame retardants (NFRs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), organophosphate flame retardants (OPFRs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Significant positive relationships were found between log KPDMS-Air, Exp' and estimates made using the pp-FLER model (log KPDMS-Air, pp-LFER) and the COSMOtherm program (log KPDMS-Air, COSMOtherm). The discrepancy and bias between measured and predicted values were much higher for COSMO-RS than the pp-LFER model, indicating the anticipated better performance of the pp-LFER model than COSMO-RS. Calculations made using measured KPDMS-Air, Exp' values show that a PDMS PAS of 0.1 cm thickness will reach 25% of its equilibrium capacity in ∼1 day for alpha-hexachlorocyclohexane (α-HCH) to âˆ¼ 500 years for tris (4-tert-butylphenyl) phosphate (TTBPP), which brackets the volatility range of all compounds tested. The results presented show the utility of GC-RT method for rapid and precise measurements of KPDMS-Air.


Asunto(s)
Cromatografía de Gases/métodos , Dimetilpolisiloxanos/química , Modelos Teóricos , Plaguicidas/análisis , Compuestos Orgánicos Volátiles/análisis , Aire , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Hexaclorociclohexano/análisis , Hidrocarburos Clorados/análisis , Bifenilos Policlorados/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA