Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 200
1.
Elife ; 122024 May 02.
Article En | MEDLINE | ID: mdl-38695350

Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.


ATP-Binding Cassette Transporters , Bacterial Proteins , Lactococcus lactis , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Betaine/metabolism , Cryoelectron Microscopy , Fluorescence Resonance Energy Transfer , Lactococcus lactis/metabolism , Osmolar Concentration , Osmoregulation , Protein Binding , Protein Domains , Single Molecule Imaging
2.
Cell Rep ; 43(4): 114110, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38607912

Transmembrane transporter proteins are essential for maintaining cellular homeostasis and, as such, are key drug targets. Many transmembrane transporter proteins are known to undergo large structural rearrangements during their functional cycles. Despite the wealth of detailed structural and functional data available for these systems, our understanding of their dynamics and, consequently, how they function is generally limited. We introduce an innovative approach that enables us to directly measure the dynamics and stability of interdomain interactions of transmembrane proteins using optical tweezers. Focusing on the osmoregulatory ATP-binding cassette transporter OpuA from Lactococcus lactis, we examine the mechanical properties and potential interactions of its substrate-binding domains. Our measurements are performed in lipid nanodiscs, providing a native-mimicking environment for the transmembrane protein. The technique provides high spatial and temporal resolution and allows us to study the functionally relevant motions and interdomain interactions of individual transmembrane transporter proteins in real time in a lipid bilayer.


ATP-Binding Cassette Transporters , Bacterial Proteins , Lactococcus lactis , Optical Tweezers , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , Lactococcus lactis/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Protein Binding , Protein Domains , Single Molecule Imaging , Protein Stability , Lipid Bilayers/metabolism , Lipid Bilayers/chemistry
3.
ACS Synth Biol ; 13(5): 1549-1561, 2024 May 17.
Article En | MEDLINE | ID: mdl-38632869

ATP is a universal energy currency that is essential for life. l-Arginine degradation via deamination is an elegant way to generate ATP in synthetic cells, which is currently limited by a slow l-arginine/l-ornithine exchange. We are now implementing a new antiporter with better kinetics to obtain faster ATP recycling. We use l-arginine-dependent ATP formation for the continuous synthesis and export of glycerol 3-phosphate by including glycerol kinase and the glycerol 3-phosphate/Pi antiporter. Exported glycerol 3-phosphate serves as a precursor for the biosynthesis of phospholipids in a second set of vesicles, which forms the basis for the expansion of the cell membrane. We have therefore developed an out-of-equilibrium metabolic network for ATP recycling, which has been coupled to lipid synthesis. This feeder-utilizer system serves as a proof-of-principle for the systematic buildup of synthetic cells, but the vesicles can also be used to study the individual reaction networks in confinement.


Adenosine Triphosphate , Arginine , Adenosine Triphosphate/metabolism , Arginine/metabolism , Artificial Cells/metabolism , Glycerophosphates/metabolism , Glycerol Kinase/metabolism , Glycerol Kinase/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Lipids/biosynthesis , Phospholipids/metabolism , Metabolic Networks and Pathways
4.
Commun Biol ; 7(1): 508, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678067

Protein diffusion is a critical factor governing the functioning and organization of a cell's cytoplasm. In this study, we investigate the influence of (poly)ribosome distribution, cell aging, protein aggregation, and biomolecular condensate formation on protein mobility within the E. coli cytoplasm. We employ nanoscale single-molecule displacement mapping (SMdM) to determine the spatial distribution of the proteins and to meticulously track their diffusion. We show that the distribution of polysomes does not impact the lateral diffusion coefficients of proteins. However, the degradation of mRNA induced by rifampicin treatment leads to an increase in protein mobility within the cytoplasm. Additionally, we establish a significant correlation between cell aging, the asymmetric localization of protein aggregates and reduced diffusion coefficients at the cell poles. Notably, we observe variations in the hindrance of diffusion at the poles and the central nucleoid region for small and large proteins, and we reveal differences between the old and new pole of the cell. Collectively, our research highlights cellular processes and mechanisms responsible for spatially organizing the bacterial cytoplasm into domains with different structural features and apparent viscosity.


Cytoplasm , Escherichia coli Proteins , Escherichia coli , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli/drug effects , Cytoplasm/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Diffusion
5.
J Vis Exp ; (206)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38682922

We present a method to incorporate into vesicles complex protein networks, involving integral membrane proteins, enzymes, and fluorescence-based sensors, using purified components. This method is relevant for the design and construction of bioreactors and the study of complex out-of-equilibrium metabolic reaction networks. We start by reconstituting (multiple) membrane proteins into large unilamellar vesicles (LUVs) according to a previously developed protocol. We then encapsulate a mixture of purified enzymes, metabolites, and fluorescence-based sensors (fluorescent proteins or dyes) via freeze-thaw-extrusion and remove non-incorporated components by centrifugation and/or size-exclusion chromatography. The performance of the metabolic networks is measured in real time by monitoring the ATP/ADP ratio, metabolite concentration, internal pH, or other parameters by fluorescence readout. Our membrane protein-containing vesicles of 100-400 nm diameter can be converted into giant-unilamellar vesicles (GUVs), using existing but optimized procedures. The approach enables the inclusion of soluble components (enzymes, metabolites, sensors) into micrometer-size vesicles, thus upscaling the volume of the bioreactors by orders of magnitude. The metabolic network containing GUVs are trapped in microfluidic devices for analysis by optical microscopy.


Unilamellar Liposomes , Unilamellar Liposomes/metabolism , Unilamellar Liposomes/chemistry , Metabolic Networks and Pathways , Membrane Proteins/metabolism , Membrane Proteins/chemistry
6.
Chem Rev ; 124(4): 1899-1949, 2024 02 28.
Article En | MEDLINE | ID: mdl-38331392

Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress.


Bacteria , Phase Separation , Macromolecular Substances/metabolism , Cytoplasm/chemistry , Cytoplasm/metabolism , Bacteria/metabolism , Homeostasis
7.
J Mol Biol ; 436(4): 168420, 2024 02 15.
Article En | MEDLINE | ID: mdl-38143021

The width of the periplasmic space of Gram-negative bacteria is only about 25-30 nm along the long axis of the cell, which affects free diffusion of (macro)molecules. We have performed single-particle displacement measurements and diffusion simulation studies to determine the impact of confinement on the apparent mobility of proteins in the periplasm of Escherichia coli. The diffusion of a reporter protein and of OsmY, an osmotically regulated periplasmic protein, is characterized by a fast and slow component regardless of the osmotic conditions. The diffusion coefficient of the fast fraction increases upon osmotic upshift, in agreement with a decrease in macromolecular crowding of the periplasm, but the mobility of the slow (immobile) fraction is not affected by the osmotic stress. We observe that the confinement created by the inner and outer membranes results in a lower apparent diffusion coefficient, but this can only partially explain the slow component of diffusion in the particle displacement measurements, suggesting that a fraction of the proteins is hindered in its mobility by large periplasmic structures. Using particle-based simulations, we have determined the confinement effect on the apparent diffusion coefficient of the particles for geometries akin the periplasmic space of Gram-negative bacteria.


Escherichia coli Proteins , Escherichia coli , Periplasm , Diffusion , Escherichia coli/chemistry , Escherichia coli Proteins/chemistry , Osmotic Pressure , Periplasm/chemistry , Single Molecule Imaging
8.
PLoS Comput Biol ; 19(9): e1011093, 2023 09.
Article En | MEDLINE | ID: mdl-37695774

We have developed Simulation-based Reconstructed Diffusion (SbRD) to determine diffusion coefficients corrected for confinement effects and for the bias introduced by two-dimensional models describing a three-dimensional motion. We validate the method on simulated diffusion data in three-dimensional cell-shaped compartments. We use SbRD, combined with a new cell detection method, to determine the diffusion coefficients of a set of native proteins in Escherichia coli. We observe slower diffusion at the cell poles than in the nucleoid region of exponentially growing cells, which is independent of the presence of polysomes. Furthermore, we show that the newly formed pole of dividing cells exhibits a faster diffusion than the old one. We hypothesize that the observed slowdown at the cell poles is caused by the accumulation of aggregated or damaged proteins, and that the effect is asymmetric due to cell aging.


Cellular Senescence , Escherichia coli , Cell Shape , Computer Simulation
9.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Article En | MEDLINE | ID: mdl-37336577

In living cells, the biochemical processes such as energy provision, molecule synthesis, gene expression, and cell division take place in a confined space where the internal chemical and physical conditions are different from those in dilute solutions. The concentrations of specific molecules and the specific reactions and interactions vary for different types of cells, but a number of factors are universal and kept within limits, which we refer to as physicochemical homeostasis. For instance, the internal pH of many cell types is kept within the range of 7.0 to 7.5, the fraction of macromolecules occupies 15%-20% of the cell volume (also known as macromolecular crowding) and the ionic strength is kept within limits to prevent salting-in or salting-out effects. In this article we summarize the generic physicochemical properties of the cytoplasm of bacteria, how they are connected to the energy status of the cell, and how they affect biological processes (Fig. 1). We describe how the internal pH and proton motive force are regulated, how the internal ionic strength is kept within limits, what the impact of macromolecular crowding is on the function of enzymes and the interaction between molecules, how cells regulate their volume (and turgor), and how the cytoplasm is structured. Physicochemical homeostasis is best understood in Escherichia coli, but pioneering studies have also been performed in lactic acid bacteria.


Bacteria , Bacteria/metabolism , Cytoplasm/chemistry , Cytoplasm/metabolism , Homeostasis , Macromolecular Substances/analysis , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism
10.
ACS Synth Biol ; 12(4): 922-946, 2023 04 21.
Article En | MEDLINE | ID: mdl-37027340

Life-like systems need to maintain a basal metabolism, which includes importing a variety of building blocks required for macromolecule synthesis, exporting dead-end products, and recycling cofactors and metabolic intermediates, while maintaining steady internal physical and chemical conditions (physicochemical homeostasis). A compartment, such as a unilamellar vesicle, functionalized with membrane-embedded transport proteins and metabolic enzymes encapsulated in the lumen meets these requirements. Here, we identify four modules designed for a minimal metabolism in a synthetic cell with a lipid bilayer boundary: energy provision and conversion, physicochemical homeostasis, metabolite transport, and membrane expansion. We review design strategies that can be used to fulfill these functions with a focus on the lipid and membrane protein composition of a cell. We compare our bottom-up design with the equivalent essential modules of JCVI-syn3a, a top-down genome-minimized living cell with a size comparable to that of large unilamellar vesicles. Finally, we discuss the bottlenecks related to the insertion of a complex mixture of membrane proteins into lipid bilayers and provide a semiquantitative estimate of the relative surface area and lipid-to-protein mass ratios (i.e., the minimal number of membrane proteins) that are required for the construction of a synthetic cell.


Artificial Cells , Artificial Cells/metabolism , Lipid Bilayers/metabolism , Membrane Proteins/genetics , Unilamellar Liposomes/metabolism
11.
Commun Biol ; 6(1): 51, 2023 01 14.
Article En | MEDLINE | ID: mdl-36641529

The human pathogen Listeria monocytogenes can cope with severe environmental challenges, for which the high molecular weight stressosome complex acts as the sensing hub in a complicated signal transduction pathway. Here, we show the dynamics and functional roles of the stressosome protein RsbR1 and its paralogue, the blue-light receptor RsbL, using photo-activated localization microscopy combined with single-particle tracking and single-molecule displacement mapping and supported by physiological studies. In live cells, RsbR1 is present in multiple states: in protomers with RsbS, large clusters of stressosome complexes, and in connection with the plasma membrane via Prli42. RsbL diffuses freely in the cytoplasm but forms clusters upon exposure to light. The clustering of RsbL is independent of the presence of Prli42. Our work provides a comprehensive view of the spatial organization and intracellular dynamics of the stressosome proteins in L. monocytogenes, which paves the way towards uncovering the stress-sensing mechanism of this signal transduction pathway.


Listeria monocytogenes , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Microscopy , Signal Transduction/physiology , Phosphoproteins/metabolism
12.
Sci Adv ; 8(32): eabo5387, 2022 08 12.
Article En | MEDLINE | ID: mdl-35960807

We analyze the structure of the cytoplasm by performing single-molecule displacement mapping on a diverse set of native cytoplasmic proteins in exponentially growing Escherichia coli. We evaluate the method for application in small compartments and find that confining effects of the cell membrane affect the diffusion maps. Our analysis reveals that protein diffusion at the poles is consistently slower than in the center of the cell, i.e., to an extent greater than the confining effect of the cell membrane. We also show that the diffusion coefficient scales with the mass of the used probes, taking into account the oligomeric state of the proteins, while parameters such as native protein abundance or the number of protein-protein interactions do not correlate with the mobility of the proteins. We argue that our data paint the prokaryotic cytoplasm as a compartment with subdomains in which the diffusion of macromolecules changes with the perceived viscosity.


Escherichia coli Proteins , Escherichia coli , Cell Membrane/metabolism , Cytoplasm/metabolism , Diffusion , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry
13.
Nat Protoc ; 17(11): 2620-2646, 2022 11.
Article En | MEDLINE | ID: mdl-36002767

The passive permeability of cell membranes is of key importance in biology, biomedical research and biotechnology as it determines the extent to which various molecules such as drugs, products of metabolism, and toxins can enter or leave the cell unaided by dedicated transport proteins. The quantification of passive solute permeation is possible with radio-isotope distribution experiments, spectroscopic measurements and molecular dynamics simulations. This protocol describes stopped-flow fluorimetry measurements performed on lipid vesicles and living yeast cells to estimate the osmotic permeability of water and solutes across (bio)membranes. Encapsulation of the fluorescent dye calcein into lipid vesicles allows monitoring of volume changes upon osmotic shifts of the medium via (de)quenching of the fluorophore, which we interpret using a well-defined physical model that takes the dynamics of the vesicles into account to calculate the permeability coefficients of solutes. We also present analogous procedures to probe weak acid and base permeability in vesicles and cells by using the read-out of encapsulated or expressed pH-sensitive probes. We describe the preparation of synthetic vesicles of varying lipid composition and determination of vesicle size distribution by dynamic light scattering. Data on membrane permeation are obtained using either conventional or stopped-flow kinetic fluorescence measurements on instruments available in most research institutes and are analyzed with a suite of user-friendly MATLAB scripts ( https://doi.org/10.5281/zenodo.6511116 ). Collectively, these procedures provide a comprehensive toolbox for determining membrane permeability coefficients in a variety of experimental systems, and typically take 2-3 d.


Fluorescent Dyes , Water , Cell Membrane Permeability , Kinetics , Permeability , Water/chemistry , Solutions , Lipids , Lipid Bilayers/chemistry
14.
Biochim Biophys Acta Biomembr ; 1864(11): 184012, 2022 11 01.
Article En | MEDLINE | ID: mdl-35914570

Natamycin is a polyene macrolide, widely employed to treat fungal keratitis and other yeast infections as well as to protect food products against fungal molds. In contrast to other polyene macrolides, such as nystatin or amphotericin B, natamycin does not form pores in yeast membranes, and its mode of action is not well understood. Here, we have employed a variety of spectroscopic methods, computational modeling, and membrane reconstitution to study the molecular interactions of natamycin underlying its antifungal activity. We find that natamycin forms aggregates in an aqueous solution with strongly altered optical properties compared to monomeric natamycin. Interaction of natamycin with model membranes results in a concentration-dependent fluorescence increase which is more pronounced for ergosterol- compared to cholesterol-containing membranes up to 20 mol% sterol. Evidence for formation of specific ergosterol-natamycin complexes in the bilayer is provided. Using nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy, we find that natamycin sequesters sterols, thereby interfering with their well-known ability to order acyl chains in lipid bilayers. This effect is more pronounced for membranes containing the sterol of fungi, ergosterol, compared to those containing mammalian cholesterol. Natamycin interferes with ergosterol-dependent transport of lysine by the yeast transporter Lyp1, which we propose to be due to the sequestering of ergosterol, a mechanism that also affects other plasma membrane proteins. Our results provide a mechanistic explanation for the selective antifungal activity of natamycin, which can set the stage for rational design of novel polyenes in the future.


Natamycin , Saccharomyces cerevisiae Proteins , Amino Acid Transport Systems, Basic/metabolism , Anti-Bacterial Agents/metabolism , Antifungal Agents/chemistry , Cholesterol/chemistry , Ergosterol/chemistry , Lysine/metabolism , Natamycin/metabolism , Natamycin/pharmacology , Polyenes , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sterols/metabolism
15.
ACS Synth Biol ; 11(7): 2348-2360, 2022 07 15.
Article En | MEDLINE | ID: mdl-35377147

The bottom-up construction of an autonomously growing, self-reproducing cell represents a great challenge for synthetic biology. Synthetic cellular systems are envisioned as out-of-equilibrium enzymatic networks encompassed by a selectively open phospholipid bilayer allowing for protein-mediated communication; internal metabolite recycling is another key aspect of a sustainable metabolism. Importantly, gaining tight control over the external medium is essential to avoid thermodynamic equilibrium due to nutrient depletion or waste buildup in a closed compartment (e.g., a test tube). Implementing a sustainable strategy for phospholipid biosynthesis is key to expanding the cellular boundaries. However, phospholipid biosynthesis is currently limited by substrate availability, e.g., of glycerol 3-phosphate, the essential core of phospholipid headgroups. Here, we reconstitute an enzymatic network for sustainable glycerol 3-phosphate synthesis inside large unilamellar vesicles. We exploit the Escherichia coli glycerol kinase GlpK to synthesize glycerol 3-phosphate from externally supplied glycerol. We fuel phospholipid headgroup formation by sustainable l-arginine breakdown. In addition, we design and characterize a dynamic dialysis setup optimized for synthetic cells, which is used to control the external medium composition and to achieve sustainable glycerol 3-phosphate synthesis.


Artificial Cells , Adenosine Triphosphate/metabolism , Escherichia coli/metabolism , Glycerol/metabolism , Glycerophosphates , Phospholipids , Renal Dialysis
16.
Nat Commun ; 13(1): 1605, 2022 03 25.
Article En | MEDLINE | ID: mdl-35338137

Cell membranes provide a selective semi-permeable barrier to the passive transport of molecules. This property differs greatly between organisms. While the cytoplasmic membrane of bacterial cells is highly permeable for weak acids and glycerol, yeasts can maintain large concentration gradients. Here we show that such differences can arise from the physical state of the plasma membrane. By combining stopped-flow kinetic measurements with molecular dynamics simulations, we performed a systematic analysis of the permeability of a variety of small molecules through synthetic membranes of different lipid composition to obtain detailed molecular insight into the permeation mechanisms. While membrane thickness is an important parameter for the permeability through fluid membranes, the largest differences occur when the membranes transit from the liquid-disordered to liquid-ordered and/or to gel state, which is in agreement with previous work on passive diffusion of water. By comparing our results with in vivo measurements from yeast, we conclude that the yeast membrane exists in a highly ordered and rigid state, which is comparable to synthetic saturated DPPC-sterol membranes.


Saccharomyces cerevisiae , Sterols , Cell Membrane , Lipid Bilayers , Membranes , Permeability
17.
Curr Top Membr ; 88: 1-54, 2021.
Article En | MEDLINE | ID: mdl-34862023

Fluorescence-based sensors play a fundamental role in biological research. These sensors can be based on fluorescent proteins, fluorescent probes or they can be hybrid systems. The availability of a very large dataset of fluorescent molecules, both genetically encoded and synthetically produced, together with the structural insights on many sensing domains, allowed to rationally design a high variety of sensors, capable of monitoring both molecular and global changes in living cells or in in vitro systems. The advancements in the fluorescence-imaging field helped researchers to obtain a deeper understanding of how and where specific changes occur in a cell or in vitro by combining the readout of the fluorescent sensors with the spatial information provided by fluorescent microscopy techniques. In this review we give an overview of the state of the art in the field of fluorescent biosensors and fluorescence imaging techniques, and eventually guide the reader through the choice of the best combination of fluorescent tools and techniques to answer specific biological questions. We particularly focus on sensors for probing the bioenergetics and physicochemical status of the cell.


Biosensing Techniques , Fluorescence Resonance Energy Transfer , Energy Metabolism , Fluorescent Dyes , Optical Imaging
18.
Int J Mol Sci ; 22(11)2021 May 31.
Article En | MEDLINE | ID: mdl-34072847

Many proteins have a multimeric structure and are composed of two or more identical subunits. While this can be advantageous for the host organism, it can be a challenge when targeting specific residues in biochemical analyses. In vitro splitting and re-dimerization to circumvent this problem is a tedious process that requires stable proteins. We present an in vivo approach to transform homodimeric proteins into apparent heterodimers, which then can be purified using two-step affinity-tag purification. This opens the door to both practical applications such as smFRET to probe the conformational dynamics of homooligomeric proteins and fundamental research into the mechanism of protein multimerization, which is largely unexplored for membrane proteins. We show that expression conditions are key for the formation of heterodimers and that the order of the differential purification and reconstitution of the protein into nanodiscs is important for a functional ABC-transporter complex.


ATP-Binding Cassette Transporters/genetics , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Lipoproteins/genetics , Multiprotein Complexes/genetics , ATP-Binding Cassette Transporters/ultrastructure , Adenosine Triphosphatases/genetics , Amino Acid Sequence/genetics , Bacterial Proteins/ultrastructure , Dimerization , Fluorescence Resonance Energy Transfer , Lipoproteins/ultrastructure , Multiprotein Complexes/ultrastructure , Protein Multimerization/genetics , Protein Subunits/genetics
19.
J Mol Biol ; 433(15): 167036, 2021 07 23.
Article En | MEDLINE | ID: mdl-33957147

Our understanding of what determines ligand affinity of proteins is poor, even with high-resolution structures available. Both the non-covalent ligand-protein interactions and the relative free energies of available conformations contribute to the affinity of a protein for a ligand. Distant, non-binding site residues can influence the ligand affinity by altering the free energy difference between a ligand-free and ligand-bound conformation. Our hypothesis is that when different ligands induce distinct ligand-bound conformations, it should be possible to tweak their affinities by changing the free energies of the available conformations. We tested this idea for the maltose-binding protein (MBP) from Escherichia coli. We used single-molecule Förster resonance energy transfer (smFRET) to distinguish several unique ligand-bound conformations of MBP. We engineered mutations, distant from the binding site, to affect the stabilities of different ligand-bound conformations. We show that ligand affinity can indeed be altered in a conformation-dependent manner. Our studies provide a framework for the tuning of ligand affinity, apart from modifying binding site residues.


Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Mutation , Periplasmic Binding Proteins/chemistry , Periplasmic Binding Proteins/metabolism , Binding Sites , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Fluorescence Resonance Energy Transfer , Ligands , Models, Molecular , Periplasmic Binding Proteins/genetics , Protein Binding , Protein Conformation , Protein Stability , Single Molecule Imaging
20.
Biophys J ; 120(11): 2355-2366, 2021 06 01.
Article En | MEDLINE | ID: mdl-33887228

The motion in the cytosol of microorganisms such as bacteria and yeast has been observed to undergo a dramatic slowing down upon cell energy depletion. These observations have been interpreted as the motion being "glassy," but whether this notion is useful also for active, motor-protein-driven transport in eukaryotic cells is less clear. Here, we use fluorescence microscopy of beads in human (HeLa) cells to probe the motion of membrane-surrounded structures that are carried along the cytoskeleton by motor proteins. Evaluating several hallmarks of glassy dynamics, we show that at short length scales, the motion is heterogeneous, is nonergodic, is well described by a model for the displacement distribution in glassy systems, and exhibits a decoupling of the exchange and persistence times. Overall, these results suggest that the short length scale behavior of objects that can be transported actively by motor proteins in human cells shares features with the motion in glassy systems.


Cytoskeleton , Glass , Humans , Kinesins , Microtubules , Motion
...