Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 40(9): 1819-1833, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-31964717

RESUMEN

Dendritic arborization is highly regulated and requires tight control of dendritic growth, branching, cytoskeletal dynamics, and ion channel expression to ensure proper function. Abnormal dendritic development can result in altered network connectivity, which has been linked to neurodevelopmental disorders, including autism spectrum disorders (ASDs). How neuronal growth control programs tune dendritic arborization to ensure function is still not fully understood. Using Drosophila dendritic arborization (da) neurons as a model, we identified the conserved Ste20-like kinase Tao as a negative regulator of dendritic arborization. We show that Tao kinase activity regulates cytoskeletal dynamics and sensory channel localization required for proper sensory function in both male and female flies. We further provide evidence for functional conservation of Tao kinase, showing that its ASD-linked human ortholog, Tao kinase 2 (Taok2), could replace Drosophila Tao and rescue dendritic branching, dynamic microtubule alterations, and behavioral defects. However, several ASD-linked Taok2 variants displayed impaired rescue activity, suggesting that Tao/Taok2 mutations can disrupt sensory neuron development and function. Consistently, we show that Tao kinase activity is required in developing and as well as adult stages for maintaining normal dendritic arborization and sensory function to regulate escape and social behavior. Our data suggest an important role for Tao kinase signaling in cytoskeletal organization to maintain proper dendritic arborization and sensory function, providing a strong link between developmental sensory aberrations and behavioral abnormalities relevant for Taok2-dependent ASDs.SIGNIFICANCE STATEMENT Autism spectrum disorders (ASDs) are linked to abnormal dendritic arbors. However, the mechanisms of how dendritic arbors develop to promote functional and proper behavior are unclear. We identified Drosophila Tao kinase, the ortholog of the ASD risk gene Taok2, as a regulator of dendritic arborization in sensory neurons. We show that Tao kinase regulates cytoskeletal dynamics, controls sensory ion channel localization, and is required to maintain somatosensory function in vivo Interestingly, ASD-linked human Taok2 mutations rendered it nonfunctional, whereas its WT form could restore neuronal morphology and function in Drosophila lacking endogenous Tao. Our findings provide evidence for a conserved role of Tao kinase in dendritic development and function of sensory neurons, suggesting that aberrant sensory function might be a common feature of ASDs.


Asunto(s)
Citoesqueleto/fisiología , Dendritas/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Sensación/fisiología , Actinas/metabolismo , Animales , Animales Modificados Genéticamente , Citoesqueleto/ultraestructura , Dendritas/ultraestructura , Drosophila , Reacción de Fuga , Femenino , Humanos , Masculino , Mecanorreceptores/fisiología , Mutación/genética , Conducta Social
2.
Dev Cell ; 47(5): 564-575.e5, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30458981

RESUMEN

Hippo-like pathways are ancient signaling modules first identified in yeasts. The best-defined metazoan module forms the core of the Hippo pathway, which regulates organ size and cell fate. Hippo-like kinase modules consist of a Sterile 20-like kinase, an NDR kinase, and non-catalytic protein scaffolds. In the Hippo pathway, the upstream kinase Hippo can be activated by another kinase, Tao-1. Here, we delineate a related Hippo-like signaling module that Tao-1 regulates to control tracheal morphogenesis in Drosophila melanogaster. Tao-1 activates the Sterile 20-like kinase GckIII by phosphorylating its activation loop, a mode of regulation that is conserved in humans. Tao-1 and GckIII act upstream of the NDR kinase Tricornered to ensure proper tube formation in trachea. Our study reveals that Tao-1 activates two related kinase modules to control both growth and morphogenesis. The Hippo-like signaling pathway we have delineated has a potential role in the human vascular disease cerebral cavernous malformation.


Asunto(s)
Morfogénesis , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Tráquea/embriología , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Quinasas del Centro Germinal , Células HEK293 , Humanos , Proteínas Serina-Treonina Quinasas/genética , Tráquea/metabolismo
3.
Int J Mol Sci ; 19(6)2018 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-29861494

RESUMEN

The Ras oncogene (Rat Sarcoma oncogene, a small GTPase) is a key driver of human cancer, however alone it is insufficient to produce malignancy, due to the induction of cell cycle arrest or senescence. In a Drosophila melanogaster genetic screen for genes that cooperate with oncogenic Ras (bearing the RasV12 mutation, or RasACT), we identified the Drosophila Src (Sarcoma virus oncogene) family non-receptor tyrosine protein kinase genes, Src42A and Src64B, as promoting increased hyperplasia in a whole epithelial tissue context in the Drosophila eye. Moreover, overexpression of Src cooperated with RasACT in epithelial cell clones to drive neoplastic tumourigenesis. We found that Src overexpression alone activated the Jun N-terminal Kinase (JNK) signalling pathway to promote actin cytoskeletal and cell polarity defects and drive apoptosis, whereas, in cooperation with RasACT, JNK led to a loss of differentiation and an invasive phenotype. Src + RasACT cooperative tumourigenesis was dependent on JNK as well as Phosphoinositide 3-Kinase (PI3K) signalling, suggesting that targeting these pathways might provide novel therapeutic opportunities in cancers dependent on Src and Ras signalling.


Asunto(s)
Carcinogénesis , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Proteínas ras/metabolismo , Animales , Diferenciación Celular , Polaridad Celular , Ojo Compuesto de los Artrópodos/enzimología , Ojo Compuesto de los Artrópodos/metabolismo , Ojo Compuesto de los Artrópodos/patología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Epitelio/enzimología , Epitelio/metabolismo , Epitelio/fisiopatología , Femenino , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Tirosina Quinasas/fisiología , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas pp60(c-src)/fisiología , Proteínas ras/fisiología
4.
Curr Biol ; 26(8): 1034-42, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-26996505

RESUMEN

A key question in developmental neurobiology is how neural stem cells regulate their proliferative potential and cellular diversity and thus specify the overall size of the brain. Drosophila melanogaster neural stem cells (neuroblasts) are known to regulate their ability to self-renew by asymmetric cell division and produce different types of neurons and glia through sequential expression of temporal transcription factors [1]. Here, we show that the conserved Hippo pathway, a key regulator of epithelial organ size [2-4], restricts neuroblast proliferative potential and neuronal cell number to regulate brain size. The inhibition of Hippo pathway activity via depletion of the core kinases Tao-1, Hippo, or Warts regulates several key characteristics of neuroblasts during postembryonic neurogenesis. The Hippo pathway is required to maintain timely entry and exit from neurogenesis by regulating both neuroblast reactivation from quiescence and the time at which neuroblasts undergo terminal differentiation. Further, it restricts neuroblast cell-cycle speed, specifies cell size, and alters the proportion of neuron types generated during postembryonic neurogenesis. Collectively, deregulation of Hippo signaling in neuroblasts causes a substantial increase in overall brain size. We show that these effects are mediated via the key downstream transcription co-activator Yorkie and that, indeed, Yorkie overexpression in neuroblasts is sufficient to cause brain overgrowth. These studies reveal a novel mechanism that controls stem cell proliferative potential during postembryonic neurogenesis to regulate brain size.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Transducción de Señal , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células-Madre Neurales/citología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Tamaño de los Órganos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Señalizadoras YAP
5.
Curr Biol ; 25(1): 124-30, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25484297

RESUMEN

The Salvador-Warts-Hippo (Hippo) pathway is a conserved regulator of organ size and is deregulated in human cancers. In epithelial tissues, the Hippo pathway is regulated by fundamental cell biological properties, such as polarity and adhesion, and coordinates these with tissue growth. Despite its importance in disease, development, and regeneration, the complete set of proteins that regulate Hippo signaling remain undefined. To address this, we used proteomics to identify proteins that bind to the Hippo (Hpo) kinase. Prominent among these were PAK-interacting exchange factor (known as Pix or RtGEF) and G-protein-coupled receptor kinase-interacting protein (Git). Pix is a conserved Rho-type guanine nucleotide exchange factor (Rho-GEF) homologous to Beta-PIX and Alpha-PIX in mammals. Git is the single Drosophila melanogaster homolog of the mammalian GIT1 and GIT2 proteins, which were originally identified in the search for molecules that interact with G-protein-coupled receptor kinases. Pix and Git form an oligomeric scaffold to facilitate sterile 20-like kinase activation and have also been linked to GTPase regulation. We show that Pix and Git regulate Hippo-pathway-dependent tissue growth in D. melanogaster and that they do this in parallel to the known upstream regulator Fat cadherin. Pix and Git influence activity of the Hpo kinase by acting as a scaffold complex, rather than enzymes, and promote Hpo dimerization and autophosphorylation of Hpo's activation loop. Therefore, we provide important new insights into an ancient signaling network that controls the growth of metazoan tissues.


Asunto(s)
Proteínas de Drosophila/metabolismo , Reguladores de Proteínas de Unión al GTP/metabolismo , Crecimiento/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Animales , Dimerización , Drosophila melanogaster , Femenino , Proteínas Activadoras de GTPasa , Masculino , Transducción de Señal
6.
Sci Signal ; 6(259): pe4, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23354686

RESUMEN

An important regulator of organ size and tumorigenesis is the Hippo pathway. Recent studies have unveiled increasing complexity in regulation of Hippo pathway activity at the level of the oncoprotein Yes-associated protein (YAP). The protein tyrosine phosphatase 14 (PTPN14, known as Pez in Drosophila) was identified as a protein that antagonizes the function of the key Hippo pathway protein YAP by promoting its cytoplasmic localization under high cell density conditions. In Drosophila, Pez was identified as a repressor of epithelial proliferation in vivo. Studies in mammalian cells showed that a family of G protein-coupled receptors, the protease-activated receptors, functioned as activators of YAP. These studies shed light on the intricate regulation of the Hippo pathway and also highlight the importance of investigating these newly discovered regulatory links in physiological and pathological settings to fully appreciate their importance.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal/fisiología , Transactivadores/metabolismo , Animales , Proliferación Celular , Proteínas del Citoesqueleto/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Células Epiteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Fosfatasas/genética , Transactivadores/genética , Proteínas Señalizadoras YAP
7.
Curr Biol ; 22(17): 1587-94, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22840515

RESUMEN

The Salvador-Warts-Hippo (SWH) pathway is an evolutionarily conserved regulator of tissue growth that is deregulated in human cancer. Upstream SWH pathway components convey signals from neighboring cells via a core kinase cassette to the transcription coactivator Yorkie (Yki). Yki controls tissue growth by modulating activity of transcription factors including Scalloped (Sd). To date, five SWH pathway kinases have been identified, but large-scale phosphoproteome studies suggest that unidentified SWH pathway kinases exist. To identify such kinases, we performed an RNA interference screen and isolated homeodomain-interacting protein kinase (Hipk). Unlike previously identified SWH pathway kinases, Hipk is unique in its ability to promote, rather than repress, Yki activity and does so in parallel to the Yki-repressive kinase, Warts (Wts). Hipk is required for basal Yki activity and is likely to regulate Yki function by promoting its accumulation in the nucleus. Like many SWH pathway proteins, Hipk's function is evolutionarily conserved as its closest human homolog, HIPK2, promotes activity of the Yki ortholog YAP in a kinase-dependent fashion. Further, HIPK2 promotes YAP abundance, suggesting that the mechanism by which HIPK2 regulates YAP has diverged in mammals.


Asunto(s)
Apoptosis/genética , Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/genética , Proteínas Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transactivadores/genética , Animales , Drosophila/crecimiento & desarrollo , Drosophila/fisiología , Regulación de la Expresión Génica , Proteínas Nucleares/metabolismo , ARN Mensajero , Transactivadores/metabolismo , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Proteínas Señalizadoras YAP
8.
Dev Cell ; 21(5): 896-906, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22075148

RESUMEN

The Salvador-Warts-Hippo (SWH) pathway is a complex signaling network that controls both developmental and regenerative tissue growth. Using a genetic screen in Drosophila melanogaster, we identified the sterile 20-like kinase, Tao-1, as an SWH pathway member. Tao-1 controls various biological phenomena, including microtubule dynamics, animal behavior, and brain development. Here we describe a role for Tao-1 as a regulator of epithelial tissue growth that modulates activity of the core SWH pathway kinase cassette. Tao-1 functions together with Hippo to activate Warts-mediated repression of Yorkie. Tao-1's ability to control SWH pathway activity is evolutionarily conserved because human TAO1 can suppress activity of the Yorkie ortholog, YAP. Human TAO1 controls SWH pathway activity by phosphorylating, and activating, the Hippo ortholog, MST2. Given that SWH pathway activity is subverted in many human cancers, our findings identify human TAO kinases as potential tumor suppressor genes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Epitelio/crecimiento & desarrollo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular , Secuencia Conservada , Drosophila melanogaster/enzimología , Epitelio/metabolismo , Ojo/crecimiento & desarrollo , Femenino , Humanos , Proteínas Nucleares/metabolismo , Serina-Treonina Quinasa 3 , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Alas de Animales/crecimiento & desarrollo , Proteínas Señalizadoras YAP
9.
J Hepatol ; 44(4): 758-67, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16478641

RESUMEN

BACKGROUND/AIMS: The developed liver is able to tightly control cellular proliferation, rapidly switching from quiescence to growth in response to specific stimuli. This suggests that growth inhibitors may be involved in the control of liver growth. We analyzed the role of the Spred-family of growth inhibitors in the liver. METHODS: We screened human EST databases for Spred-related sequences. Clones were isolated, sequenced, epitope-tagged and expressed. Subcellular localization of clones were determined and their effects on cellular signaling pathways analysed using specific antibodies. Cell cycle progression assays and protein interaction studies were initiated. Organ distribution of transcripts and their expression throughout liver development and in primary hepatocytes were recorded. RESULTS: We have identified a new, liver-restricted protein, Eve-3, containing a single Ena Vasp homology (EVH1) domain that can potently block activation of the Ras/MAPK pathway. Eve-3 is specific in inhibiting the Ras/MAPK pathway. Eve-3 can block serum-mediated cell cycle progression and its expression is highly regulated during liver development. CONCLUSIONS: The liver is the only organ that can regulate its growth and mass. Eve-3 may act as an inhibitor of proliferation pathways in the mature liver and be involved in modulating the unique regenerative capacity of this organ.


Asunto(s)
Inhibidores de Crecimiento/fisiología , Hígado/química , Sistema de Señalización de MAP Quinasas/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Represoras/fisiología , Proteínas ras/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Línea Celular , Proliferación Celular , Células Cultivadas , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica , Vectores Genéticos/análisis , Vectores Genéticos/genética , Inhibidores de Crecimiento/análisis , Inhibidores de Crecimiento/genética , Hepatocitos/química , Hepatocitos/citología , Hepatocitos/fisiología , Humanos , Hígado/crecimiento & desarrollo , Hígado/fisiología , Masculino , Datos de Secuencia Molecular , Estructura Terciaria de Proteína/fisiología , Ratas , Ratas Sprague-Dawley , Proteínas Represoras/análisis , Proteínas Represoras/genética , Transfección
10.
Biochem J ; 388(Pt 2): 445-54, 2005 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15683364

RESUMEN

Sprouty and Spred {Sprouty-related EVH1 [Ena/VASP (vasodilator-stimulated phosphoprotein) homology 1] domain} proteins have been identified as antagonists of growth factor signalling pathways. We show here that Spred-1 and Spred-2 appear to have distinct mechanisms whereby they induce their effects, as the Sprouty domain of Spred-1 is not required to block MAPK (mitogen-activated protein kinase) activation, while that of Spred-2 is required. Similarly, deletion of the C-terminal Sprouty domain of Spred-1 does not affect cell-cycle progression of G(0)-synchronized cells through to S-phase following growth factor stimulation, while the Sprouty domain is required for Spred-2 function. We also demonstrate that the inhibitory function of Spred proteins is restricted to the Ras/MAPK pathway, that tyrosine phosphorylation is not required for this function, and that the Sprouty domain mediates heterodimer formation of Spred proteins. Growth-factor-mediated activation of the small GTPases, Ras and Rap1, was able to be regulated by Spred-1 and Spred-2, without affecting receptor activation. Taken together, these results highlight the potential for different functional roles of the Sprouty domain within the Spred family of proteins, suggesting that Spred proteins may use different mechanisms to induce inhibition of the MAPK pathway.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Represoras/química , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Animales , Línea Celular , Dimerización , Activación Enzimática , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas de la Membrana , Ratones , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Datos de Secuencia Molecular , Proteínas de Unión al GTP Monoméricas/antagonistas & inhibidores , Fosforilación , Estructura Terciaria de Proteína , Proteínas Represoras/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA