Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 112
1.
Biomedicines ; 12(4)2024 Apr 03.
Article En | MEDLINE | ID: mdl-38672153

BACKGROUND: Chronic limb-threatening ischemia (CLTI), the advanced stage of peripheral arterial disease, is diagnosed in the presence of ischemic rest pain, non-healing ulcers, or gangrene. Several studies have demonstrated that inflammation and endothelial dysfunction are some of the main substrates of CLTI. METHODS: A narrative review was conducted and reported according to PRISMA guidelines. Three databases were searched-Web of Science, Medline, and EMBASE-for the studies assessing CLTI and the biological markers related to it. RESULTS: We included 22 studies, and all the markers identified (C-reactive protein, D-dimers, fibrinogen, cytokines, IL-6, TNF-α, ICAM-1 (Intracellular Adhesion Molecule-1), VCAM-1 (Vascular Cell Adhesion Molecule-1), neutrophile-to-lymphocytes ratio (NLR), IL-8, Pentraxin-3, neutrophil gelatinase-associated lipocalin (NGAL), calprotectin, E-selectin, P-selectin, neopterin, High-Mobility Group Box-1 protein (HGMB-1), Osteoprotegerin (OPG) and Sortilin) were positively associated with advanced CLTI, with major limb or major cardiovascular events in these patients. CONCLUSIONS: All the studied markers had increased values in patients with CLTI, especially when associated with diabetes mellitus, proving a very important association between diabetes and major limb or cardiovascular events in these patients. There is a need for more studies to validate these markers in terms of diagnosis or prognosis in CLTI patients and in trying to find new medical strategies that target inflammation or endothelial dysfunction in these patients.

2.
Biomolecules ; 14(4)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38672515

Cerebrovascular disease accounts for major neurologic disabilities in patients with type 2 diabetes mellitus (DM). A potential association of mitochondrial DNA (mtDNA) and inflammation with cerebral vessel remodeling in patients with type 2 DM was evaluated. A cohort of 150 patients and 30 healthy controls were assessed concerning urinary albumin/creatinine ratio (UACR), synaptopodin, podocalyxin, kidney injury molecule-1 (KIM-1), N-acetyl-ß-(D)-glucosaminidase (NAG), interleukins IL-17A, IL-18, IL-10, tumor necrosis factor-alpha (TNFα), intercellular adhesion molecule-1 (ICAM-1). MtDNA-CN and nuclear DNA (nDNA) were quantified in peripheral blood and urine by qRT-PCR. Cytochrome b (CYTB) gene, subunit 2 of NADH dehydrogenase (ND2), and beta 2 microglobulin nuclear gene (B2M) were assessed by TaqMan assays. mtDNA-CN was defined as the ratio of the number of mtDNA/nDNA copies, through analysis of the CYTB/B2M and ND2/B2M ratio; cerebral Doppler ultrasound: intima-media thickness (IMT)-the common carotid arteries (CCAs), the pulsatility index (PI) and resistivity index (RI)- the internal carotid arteries (ICAs) and middle cerebral arteries (MCAs), the breath-holding index (BHI). The results showed direct correlations of CCAs-IMT, PI-ICAs, PI-MCAs, RI-ICAs, RI-MCAs with urinary mtDNA, IL-17A, IL-18, TNFα, ICAM-1, UACR, synaptopodin, podocalyxin, KIM-1, NAG, and indirect correlations with serum mtDNA, IL-10. BHI correlated directly with serum IL-10, and serum mtDNA, and negatively with serum IL-17A, serum ICAM-1, and NAG. In neurologically asymptomatic patients with type 2 DM cerebrovascular remodeling and impaired cerebrovascular reactivity may be associated with mtDNA variations and inflammation from the early stages of diabetic kidney disease.


DNA, Mitochondrial , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Inflammation , Humans , DNA, Mitochondrial/genetics , Male , Female , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Middle Aged , Inflammation/genetics , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Aged , Vascular Remodeling/genetics , Case-Control Studies
3.
Life (Basel) ; 14(4)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38672729

BACKGROUND: Breast cancer is the most frequently diagnosed cancer among women, responsible for the highest number of cancer-related deaths worldwide. There is limited data available related to serum tumor markers in breast cancer and other blood parameters or other glandular laboratory parameters. This study aims to evaluate the correlation of tumor-specific markers for breast cancer with other blood parameters and how these correlations could impact clinical management. MATERIAL AND METHOD: This retrospective study represents a data analysis from 1 January 2020 to 31 May 2023, in the County Hospital of Timisoara, Romania. We reviewed all the cases where, in the laboratory analyses, the serum tumor specific biomarkers for breast cancer were analyzed. RESULTS: A statistical analysis was performed in order to identify a possible relationship between CA 15-3 and the various biomarkers and blood parameters included in the present study. Values were classified according to reference ranges. The tests revealed no statistically significant associations between CA 15-3 values and the levels of CA125 (χ2(1) = 1.852, p = 0.174), CEA (χ2(1) = 1.139, p = 0.286), AFP (Fisher's exact test, p = 0.341), fT4 (Fisher's exact test, p = 0.310), TSH (Fisher's exact test, p = 0.177), or PTH (Fisher's exact test, p = 0.650). CONCLUSION: The findings indicate a lack of strong correlation between CA 15-3 and CA125, CEA, AFP, thyroid function markers, or PTH within this cohort.

4.
J Funct Biomater ; 15(1)2024 Jan 08.
Article En | MEDLINE | ID: mdl-38248686

This study explores the potential utilization of walstromite (BaCa2Si3O9) as a foundational material for creating new bioceramics in the form of scaffolds through 3D printing technology. To achieve this objective, this study investigates the chemical-mineralogical, morphological, and structural characteristics, as well as the biological properties, of walstromite-based bioceramics. The precursor mixture for walstromite synthesis is prepared through the sol-gel method, utilizing pure reagents. The resulting dried gelatinous precipitate is analyzed through complex thermal analysis, leading to the determination of the optimal calcination temperature. Subsequently, the calcined powder is characterized via X-ray diffraction and scanning electron microscopy, indicating the presence of calcium and barium silicates, as well as monocalcium silicate. This powder is then employed in additive 3D printing, resulting in ceramic scaffolds. The specific ceramic properties of the scaffold, such as apparent density, absorption, open porosity, and compressive strength, are assessed and fall within practical use limits. X-ray diffraction analysis confirms the formation of walstromite as a single phase in the ceramic scaffold. In vitro studies involving immersion in simulated body fluid (SBF) for 7 and 14 days, as well as contact with osteoblast-like cells, reveal the scaffold's ability to form a phosphate layer on its surface and its biocompatibility. This study concludes that the walstromite-based ceramic scaffold exhibits promising characteristics for potential applications in bone regeneration and tissue engineering.

5.
Toxics ; 11(12)2023 Nov 25.
Article En | MEDLINE | ID: mdl-38133361

Zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), cadmium (Cd), and lead (Pb) levels were measured in the Bor City water supply system (control) and two watercourses exposed to mining wastewaters, i.e., the Lutarica River (one site) and the Kriveljska River (two sites). The same parameters were determined in the brain, heart, lungs, stomach, liver, spleen, kidneys, and testes of male Wistar rats given water from these sources for 2 months. Water Cu, Fe, Cd, and Pb were outside the safe range, excepting the reference site. Significant impacts on intra-organ metal homeostasis were detected, especially in the brain, stomach, kidneys, and testes. The dynamics and magnitude of these changes (versus controls) depended on the target organ, analyzed metal, and water origin. The greatest number of significant intra-organ associations between essential and non-essential metals were found for Cd-Zn, Cd-Cu, and Cd-Mn. A regression analysis suggested the kidneys as the most relevant organ for monitoring water manganese, and the stomach and brain for lead. These results highlight the environmental risks associated with mining wastewaters from the Bor area and could help scientists in mapping the spatial distribution and severity of trace metal contamination in water sources.

6.
Medicina (Kaunas) ; 59(12)2023 Dec 10.
Article En | MEDLINE | ID: mdl-38138246

Background: Hepatic encephalopathy (HE) caused by cirrhosis has severe consequences on an individual's lifespan, leading to long-term liver complications and potentially life-threatening outcomes. Despite recent interest in this condition, the effectiveness of secondary prophylaxis involving rixafimin, lactulose, or L-ornithine L-aspartate (LOLA) may be hindered by the unique microbial profiles each patient possesses. Methods: Thus, in this manuscript, we aimed to search, identify, and gather all randomized controlled trials (RCTs) published between 2000-2023 (November) in four major academic databases such as PubMed, ISI Web of Science, Scopus, and ScienceDirect by using a controlled terminology and web strings that reunite six main keywords. We complementarily retrieved data on the ongoing RCTs. Results: Regardless of the relatively high number of results displayed (n = 75), 46.66% (n = 35) were initially deemed eligible after the first evaluation phase after removing duplicates, n = 40 (53.34%). At the second assessment stage, we eliminated 11.42% (n = 4) studies, of which n = 22 finally met the eligibility criteria to be included in the main body of the manuscript. In terms of RCTs, otherwise found in distinct stages of development, n = 3 target FMT and n = 1 probiotics. Conclusions: Although we benefit from the necessary information and technology to design novel strategies for microbiota, only probiotics and synbiotics have been extensively studied in the last decade compared to FMT.


Hepatic Encephalopathy , Probiotics , Humans , Hepatic Encephalopathy/therapy , Randomized Controlled Trials as Topic , Lactulose/therapeutic use , Liver Cirrhosis/complications , Liver Cirrhosis/drug therapy , Probiotics/therapeutic use
7.
Children (Basel) ; 10(11)2023 Oct 28.
Article En | MEDLINE | ID: mdl-38002843

BACKGROUND: Helicobacter pylori antibiotic resistance has increased worldwide and affects the effectiveness of current therapies. The recommended first-line empiric treatment should be tailored to the local clarithromycin resistance rate. This study aimed to determine the pediatric patient profile and rate of clarithromycin resistance for patients diagnosed with Helicobacter pylori by gastric biopsy. METHODS: We studied 84 positive gastric samples for Helicobacter pylori. Positive results were confirmed by a rapid urease test and histopathological examination, with the type of gastritis established according to the Sydney System. Gastric biopsy samples were stored in RNA saver. Clarithromycin resistance was determined by a real-time polymerase chain reaction-based molecular assay after RNA-DNA extraction. RESULTS: Of the 84 biopsy samples analyzed, 35 (41.6%) were resistant to clarithromycin. Clarithromycin resistance was found mainly in girls (80%) with a mean age of 15 years (range 6-17 years). The history of prior exposure to clarithromycin was 91.6%. The concordance between the histopathological examination and the PCR test was 100%. CONCLUSIONS: One in 2.4 children infected with Helicobacter pylori had a strain resistant to clarithromycin. This resistant strain may be a reason for treatment failure in Romanian children, yet this is uninvestigated. The high rate of bacterial resistance to this antibiotic among children indicates the need for susceptibility testing before therapy.

8.
J Funct Biomater ; 14(10)2023 Oct 18.
Article En | MEDLINE | ID: mdl-37888191

The delivery of nucleosides represents an interesting research trend in recent years due to their application in various viral infections. The main aims of this study were to develop and to characterize polyurethane particles that are intended to be used for the transport of nucleosides. Three samples have been prepared using aliphatic diisocyanates, a mixture of polyethylene glycol, polycaprolactone, and diols, respectively. The samples were characterized through refractivity measurements, drug loading efficacy, release and penetration rate investigations, FTIR and Raman spectroscopy, thermal analyses, Zetasizer, SEM, HDFa cells viability, and irritation tests on mice skin. The results indicate the obtaining of particles with sizes between 132 and 190 nm, positive Zeta potential values (28.3-31.5 mV), and a refractivity index around 1.60. A good thermal stability was found, and SEM images show a medium tendency to agglomerate. The samples' color, pH, and electrical conductivity have changed only to a small extent over time, and the evaluations indicate an almost 70% encapsulation efficacy, a prolonged release, and that around 70% of particles have penetrated an artificial membrane in the first 24 h. The synthesized products should be tested in further clinical trials, and the current tests on cell cultures and mice skin revealed no side effects.

9.
Sci Rep ; 13(1): 14878, 2023 09 09.
Article En | MEDLINE | ID: mdl-37689817

New therapeutic approaches are needed for the management of the highly chemo- and radioresistant chondrosarcoma (CHS). In this work, we used polyethylene glycol-encapsulated iron oxide nanoparticles for the intracellular delivery of the chemotherapeutic doxorubicin (IONPDOX) to augment the cytotoxic effects of carbon ions in comparison to photon radiation therapy. The in vitro biological effects were investigated in SW1353 chondrosarcoma cells focusing on the following parameters: cell survival using clonogenic test, detection of micronuclei (MN) by cytokinesis blocked micronucleus assay and morphology together with spectral fingerprints of nuclei using enhanced dark-field microscopy (EDFM) assembled with a hyperspectral imaging (HI) module. The combination of IONPDOX with ion carbon or photon irradiation increased the lethal effects of irradiation alone in correlation with the induction of MN. Alterations in the hyperspectral images and spectral profiles of nuclei reflected the CHS cell biological modifications following the treatments, highlighting possible new spectroscopic markers of cancer therapy effects. These outcomes showed that the proposed combined treatment is promising in improving CHS radiotherapy.


Bone Neoplasms , Chondrosarcoma , Humans , Ions , Biomarkers , Carbon , Chondrosarcoma/radiotherapy , Doxorubicin
10.
Pharmaceutics ; 15(9)2023 Aug 27.
Article En | MEDLINE | ID: mdl-37765184

Magnetite nanoparticles (MNPs) have been intensively studied for biomedical applications, especially as drug delivery systems for the treatment of infections. Additionally, they are characterized by intrinsic antimicrobial properties owing to their capacity to disrupt or penetrate the microbial cell wall and induce cell death. However, the current focus has shifted towards increasing the control of the synthesis reaction to ensure more uniform nanoparticle sizes and shapes. In this context, microfluidics has emerged as a potential candidate method for the controlled synthesis of nanoparticles. Thus, the aim of the present study was to obtain a series of antibiotic-loaded MNPs through a microfluidic device. The structural properties of the nanoparticles were investigated through X-ray diffraction (XRD) and, selected area electron diffraction (SAED), the morphology was evaluated through transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM), the antibiotic loading was assessed through Fourier-transform infrared spectroscopy (FT-IR) and, and thermogravimetry and differential scanning calorimetry (TG-DSC) analyses, and. the release profiles of both antibiotics was determined through UV-Vis spectroscopy. The biocompatibility of the nanoparticles was assessed through the MTT assay on a BJ cell line, while the antimicrobial properties were investigated against the S. aureus, P. aeruginosa, and C. albicans strains. Results proved considerable uniformity of the antibiotic-containing nanoparticles, good biocompatibility, and promising antimicrobial activity. Therefore, this study represents a step forward towards the microfluidic development of highly effective nanostructured systems for antimicrobial therapies.

11.
Metabolites ; 13(8)2023 Jul 28.
Article En | MEDLINE | ID: mdl-37623837

Complications due to type 2 diabetes mellitus (T2DM) such as diabetic kidney disease (DKD) and cerebral small vessel disease (CSVD) have a powerful impact on mortality and morbidity. Our current diagnostic markers have become outdated as T2DM-related complications continue to develop. The aim of the investigation was to point out the relationship between previously selected metabolites which are potentially derived from gut microbiota and indicators of endothelial, proximal tubule (PT), and podocyte dysfunction, and neurosonological indices. The study participants were 20 healthy controls and 90 T2DM patients divided into three stages: normoalbuminuria, microalbuminuria, and macroalbuminuria. Serum and urine metabolites were determined by untargeted and targeted metabolomic techniques. The markers of endothelial, PT and podocyte dysfunction were assessed by ELISA technique, and the neurosonological indices were provided by an ultrasound device with high resolution (MYLAB 8-ESAOTE Italy). The descriptive statistical analysis was followed by univariable and multivariable linear regression analyses. In conclusion, in serum, arginine (sArg), butenoylcarnitine (sBCA), and indoxyl sulfate (sIS) expressed a biomarker potential in terms of renal endothelial dysfunction and carotid atherosclerosis, whereas sorbitol (sSorb) may be a potential biomarker of blood-brain barrier (BBB) dysfunction. In urine, BCA and IS were associated with markers of podocyte damage, whereas PCS correlated with markers of PT dysfunction.

12.
Medicina (Kaunas) ; 59(8)2023 Aug 10.
Article En | MEDLINE | ID: mdl-37629737

Background and objectives: Obstructive sleep apnea (OSA) in children is a debilitating disease, difficult to treat. Dental appliances have been proposed as a valid therapy for improving functional outcomes with good compliance rates. Herein, we aimed to perform a meta-analysis comparing clinical outcomes between OSA children treated with dental appliances versus controls. Materials Methods: The study was registered with PROSPERO. A systematic search was performed for all comparative studies examining outcomes in pediatric patients who underwent treatment of OSA with oral appliances versus controls. Data was extracted and analyzed using a random effects model via Rev Man 5.3. Results: Six studies including 180 patients were analyzed split into two groups: patients treated with dental appliances (n = 123) and the controls (n = 119). Therapy with dental appliances was shown to significantly improve the apnea-hypopnea index (p = 0.009) and enlarge the superior posterior airway space (p = 0.02). Maxilla-to-mandible measurements were not significantly different between the two groups, nor was the mean SO2 (p = 0.80). Conclusions: This is the most updated meta-analysis assessing the role of dental appliances for OSA in children; it shows that such devices can improve functional outcomes by decreasing the apnea-hypopnea index.


Patient Compliance , Sleep Apnea, Obstructive , Humans , Child , Sleep Apnea, Obstructive/therapy
13.
Nanomaterials (Basel) ; 13(15)2023 Jul 31.
Article En | MEDLINE | ID: mdl-37570539

A composite based on calcium sulphate hemihydrate enhanced with Zn- or B-doped hydroxyapatite nanoparticles was fabricated and evaluated for bone graft applications. The investigations of their structural and morphological properties were performed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy techniques. To study the bioactive properties of the obtained composites, soaking tests in simulated body fluid (SBF) were performed. The results showed that the addition of 2% Zn results in an increase of 2.27% in crystallinity, while the addition of boron causes an increase of 5.61% compared to the undoped HAp sample. The crystallite size was found to be 10.69 ± 1.59 nm for HAp@B, and in the case of HAp@Zn, the size reaches 16.63 ± 1.83 nm, compared to HAp, whose crystallite size value was 19.44 ± 3.13 nm. The mechanical resistance of the samples doped with zinc was the highest and decreased by about 6% after immersion in SBF. Mixing HAp nanoparticles with gypsum improved cell viability compared to HAp for all concentrations (except for 200 µg/mL). Cell density decreased with increasing nanoparticle concentration, compared to gypsum, where the cell density was not significantly affected. The degree of cellular differentiation of osteoblast-type cells was more accentuated in the case of samples treated with G+HAp@B nanoparticles compared to HAp@B. Cell viability in these samples decreased inversely proportionally to the concentration of administered nanoparticles. From the point of view of cell density, this confirmed the quantitative data.

14.
Int J Mol Sci ; 24(11)2023 May 24.
Article En | MEDLINE | ID: mdl-37298158

The diagnosis and management of fragile X syndrome (FXS) have significantly improved in the last three decades, although the current diagnostic techniques are not yet able to precisely identify the number of repeats, methylation status, level of mosaicism, and/or the presence of AGG interruptions. A high number of repeats (>200) in the fragile X messenger ribonucleoprotein 1 gene (FMR1) results in hypermethylation of promoter and gene silencing. The actual molecular diagnosis is performed using a Southern blot, TP-PCR (Triplet-Repeat PCR), MS-PCR (Methylation-Specific PCR), and MS-MLPA (Methylation-Specific MLPA) with some limitations, with multiple assays being necessary to completely characterise a patient with FXS. The actual gold standard diagnosis uses Southern blot; however, it cannot accurately characterise all cases. Optical genome mapping is a new technology that has also been developed to approach the diagnosis of fragile X syndrome. Long-range sequencing represented by PacBio and Oxford Nanopore has the potential to replace the actual diagnosis and offers a complete characterization of molecular profiles in a single test. The new technologies have improved the diagnosis of fragile X syndrome and revealed unknown aberrations, but they are a long way from being used routinely in clinical practice.


Fragile X Syndrome , Humans , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , DNA Methylation , Gene Silencing , Trinucleotide Repeats , Alleles , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Mutation
15.
Polymers (Basel) ; 15(11)2023 May 25.
Article En | MEDLINE | ID: mdl-37299245

In this research, Hydroxyapatite-Potassium, Sodium Niobate-Chitosan (HA-KNN-CSL) biocomposites were synthesized, both as hydrogel and ultra-porous scaffolds, to offer two commonly used alternatives to biomaterials in dental clinical practice. The biocomposites were obtained by varying the content of low deacetylated chitosan as matrix phase, mesoporous hydroxyapatite nano-powder, and potassium-sodium niobate (K0.47Na0.53NbO3) sub-micron-sized powder. The resulting materials were characterized from physical, morpho-structural, and in vitro biological points of view. The porous scaffolds were obtained by freeze-drying the composite hydrogels and had a specific surface area of 18.4-24 m2/g and a strong ability to retain fluid. Chitosan degradation was studied for 7 and 28 days of immersion in simulated body fluid without enzymatic presence. All synthesized compositions proved to be biocompatible in contact with osteoblast-like MG-63 cells and showed antibacterial effects. The best antibacterial effect was shown by the 10HA-90KNN-CSL hydrogel composition against Staphylococcus aureus and the fungal strain Candida albicans, while a weaker effect was observed for the dry scaffold.

16.
Int J Mol Sci ; 24(12)2023 Jun 06.
Article En | MEDLINE | ID: mdl-37372951

Mitochondrial dysfunction is an important mechanism contributing to the development and progression of diabetic kidney disease (DKD). Mitochondrial DNA (mtDNA) levels in blood and urine were evaluated in relation to podocyte injury and proximal tubule (PT) dysfunction, as well as to a specific inflammatory response in normoalbuminuric DKD. A total of 150 type 2 diabetes mellitus (DM) patients (52 normoalbuminuric, 48 microalbuminuric, and 50 macroalbuminuric ones, respectively) and 30 healthy controls were assessed concerning the urinary albumin/creatinine ratio (UACR), biomarkers of podocyte damage (synaptopodin and podocalyxin), PT dysfunction (kidney injury molecule-1 (KIM-1) and N-acetyl-ß-(D)-glucosaminidase (NAG)), and inflammation (serum and urinary interleukins (IL-17A, IL-18, and IL-10)). MtDNA-CN and nuclear DNA (nDNA) were quantified in peripheral blood and urine via qRT-PCR. MtDNA-CN was defined as the ratio of the number of mtDNA/nDNA copies via analysis of the CYTB/B2M and ND2/B2M ratio. Multivariable regression analysis provided models in which serum mtDNA directly correlated with IL-10 and indirectly correlated with UACR, IL-17A, and KIM-1 (R2 = 0.626; p < 0.0001). Urinary mtDNA directly correlated with UACR, podocalyxin, IL-18, and NAG, and negatively correlated with eGFR and IL-10 (R2 = 0.631; p < 0.0001). Mitochondrial DNA changes in serum and urine display a specific signature in relation to inflammation both at the podocyte and tubular levels in normoalbuminuric type 2 DM patients.


Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Interleukin-10 , Interleukin-17 , Interleukin-18/genetics , DNA, Mitochondrial/genetics , Albuminuria/urine , Inflammation/genetics , Mitochondria/genetics , Biomarkers/urine
17.
Antioxidants (Basel) ; 12(3)2023 Mar 07.
Article En | MEDLINE | ID: mdl-36978905

Mitochondria are subcellular organelles involved in essential cellular functions, including cytosolic calcium regulation, cell apoptosis, and reactive oxygen species production. They are the site of important biochemical pathways, including the tricarboxylic acid cycle, parts of the ureagenesis cycle, or haem synthesis. Mitochondria are responsible for the majority of cellular ATP production through OXPHOS. Mitochondrial dysfunction has been associated with metabolic pathologies such as diabetes, obesity, hypertension, neurodegenerative diseases, cellular aging, and cancer. In this article, we describe the pathophysiological changes in, and mitochondrial role of, metabolic disorders (diabetes, obesity, and cardiovascular disease) and their correlation with oxidative stress. We highlight the genetic changes identified at the mtDNA level. Additionally, we selected several representative biomarkers involved in oxidative stress and summarize the progress of therapeutic strategies.

18.
Int J Mol Sci ; 24(5)2023 Feb 28.
Article En | MEDLINE | ID: mdl-36902091

Over the past 40 years, the 5-years-overall survival rate of pediatric cancer reached 75-80%, and for acute lymphoblastic leukemia (ALL), exceeded 90%. Leukemia continues to be a major cause of mortality and morbidity for specific patient populations, including infants, adolescents, and patients with high-risk genetic abnormalities. The future of leukemia treatment needs to count better on molecular therapies as well as immune and cellular therapy. Advances in the scientific interface have led naturally to advances in the treatment of childhood cancer. These discoveries have involved the recognition of the importance of chromosomal abnormalities, the amplification of the oncogenes, the aberration of tumor suppressor genes, as well as the dysregulation of cellular signaling and cell cycle control. Lately, novel therapies that have already proven efficient on relapsed/refractory ALL in adults are being evaluated in clinical trials for young patients. Tirosine kinase inhibitors are, by now, part of the standardized treatment of Ph+ALL pediatric patients, and Blinatumomab, with promising results in clinical trials, received both FDA and EMA approval for use in children. Moreover, other targeted therapies such as aurora-kinase inhibitors, MEK-inhibitors, and proteasome-inhibitors are involved in clinical trials that include pediatric patients. This is an overview of the novel leukemia therapies that have been developed starting from the molecular discoveries and those that have been applied in pediatric populations.


Antibodies, Bispecific , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Adult , Child , Humans , Antibodies, Bispecific/therapeutic use , Immunotherapy/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Proteasome Inhibitors/therapeutic use
19.
Genes (Basel) ; 14(2)2023 02 11.
Article En | MEDLINE | ID: mdl-36833393

2q37 microdeletion/deletion syndrome (2q37DS) is one of the most common subtelomeric deletion disorders, caused by a 2q37 deletion of variable size. The syndrome is characterized by a broad and diverse spectrum of clinical findings: characteristic facial dysmorphism, developmental delay/intellectual disability (ID), brachydactyly type E, short stature, obesity, hypotonia in infancy, and abnormal behavior with autism spectrum disorder. Although numerous cases have been described so far, the exact mapping of the genotype and phenotype have not yet been achieved. MATERIALS AND METHODS: In this study we analyzed nine newly diagnosed cases with 2q37 deletion (3 male/6 female, aged between 2 and 30 years old), and followed up at the Iasi Regional Medical Genetics Centre. All patients were tested first with MLPA using combined kits P036/P070 subtelomeric screening mix and follow-up mix P264; after, the deletion size and location were confirmed via CGH-array. We compared our findings with the data of other cases reported in the literature. RESULTS: From nine cases, four had pure 2q37 deletions of variable sizes, and five presented deletion/duplication rearrangements (with chromosomes 2q, 9q, and 11p). In most cases, characteristic phenotypic aspects were observed: 9/9 facial dysmorphism, 8/9 global developmental delay and ID, 6/9 hypotonia, 5/9 behavior disorders, and 8/9 skeletal anomalies-especially brachydactyly type E. Two cases had obesity, one case had craniosynostosis, and four had heart defects. Other features found in our cases included translucent skin and telangiectasias (6/9), and a hump of fat on the upper thorax (5/9). CONCLUSIONS: Our study enriches the literature data by describing new clinical features associated with 2q37 deletion, and possible genotype-phenotype correlations.


Autism Spectrum Disorder , Brachydactyly , Intellectual Disability , Humans , Male , Female , Brachydactyly/diagnosis , Brachydactyly/genetics , Muscle Hypotonia , Genetic Association Studies , Intellectual Disability/genetics , Obesity
20.
Int J Mol Sci ; 24(3)2023 Jan 22.
Article En | MEDLINE | ID: mdl-36768525

Involvement of 3D tumor cell models in the in vitro biological testing of novel nanotechnology-based strategies for cancer management can provide in-depth information on the real behavior of tumor cells in complex biomimetic architectures. Here, we used polyethylene glycol-encapsulated iron oxide nanoparticles for the controlled delivery of a doxorubicin chemotherapeutic substance (IONPDOX), and to enhance cytotoxicity of photon radiation therapy. The biological effects of nanoparticles and 150 kV X-rays were evaluated on both 2D and 3D cell models of normal human keratinocytes (HaCaT) and tumor cells-human cervical adenocarcinoma (HeLa) and human squamous carcinoma (FaDu)-through cell survival. In all 2D cell models, nanoparticles were similarly internalized in a peri-nuclear pattern, but resulted in different survival capabilities following radiation treatment. IONP on normal keratinocytes showed a protective effect, but a cytotoxic effect for cancer cells. In 3D tumor cell models, IONPDOX were able to penetrate the cell spheroids towards the hypoxic areas. However, IONPDOX and 150 kV X-rays led to a dose-modifying factor DMFSF=0.1 = 1.09 ± 0.1 (200 µg/mL IONPDOX) in HeLa spheroids, but to a radioprotective effect in FaDu spheroids. Results show that the proposed treatment is promising in the management of cervical adenocarcinoma.


Adenocarcinoma , Antineoplastic Agents , Nanoparticles , Uterine Cervical Neoplasms , Female , Humans , Doxorubicin/pharmacology , Spheroids, Cellular , Cell Line, Tumor
...