Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928366

RESUMEN

Selenium is an essential inorganic compound in human and animal nutrition, involved in the proper functioning of the body. As a micronutrient, it actively contributes to the regulation of various metabolic activities, i.e., thyroid hormone, and protection against oxidative stress. However, Se exhibits a narrow concentration window between having a positive effect and exerting a toxic effect. In higher doses, it negatively affects living organisms and causes DNA damage through the formation of free radicals. Increased reactivity of Se anions can also disrupt the integrity and function of DNA-repairing proteins. As the permissible concentration of Se in drinking water is 10 µg/L, it is vital to develop sensitive and robust methods of Se detection in aqueous samples. In this study, for the first time, we proposed a selective aptamer for selenate ion detection, chosen following the SELEX process, and its application in the construction of an electrochemical aptasensor towards SeO42- ions. Measurement conditions such as the used redox marker and pH value of the measurement solution were chosen. The proposed aptasensor is characterized by good selectivity and an LOD of 1 nM. Conditions for biosensor regeneration and storage were also investigated in this research.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Ácido Selénico , Aptámeros de Nucleótidos/química , Ácido Selénico/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Iones , Técnica SELEX de Producción de Aptámeros/métodos , Humanos , Límite de Detección
2.
Mikrochim Acta ; 191(4): 189, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457045

RESUMEN

The importance of understanding the mercury (II) ion interactions with thymine-rich DNA sequences is the reason for multiple comparative investigations carried out with the use of optical detection techniques directly in the depth of solution. However, the results of such investigations have limited applicability in the interpretation of the Hg2+ binding phenomenon by DNA sequences in thin, interfacial (electrode/solution), self-organized monolayers immobilized on polarizable surfaces, often used for sensing purposes in electrochemical biosensors. Overlooking the careful optimization of the measurement conditions is the source of discrepancies in the interpretation of the registered electrochemical signal. In this study, the chosen effects accompanying the efficiency of surface related recognition of Hg2+ by polyThymine DNA sequences labelled with methylene blue were investigated by voltammetry, QCM and spectro-electrochemical techniques. As was shown, the composition of the biosensing layer and buffers or the analytical procedures have a significant impact on the registered electrochemical readout which translates into signal stability, the biosensor's working parameters or even the mechanism of detection. After elucidation of the above factors, the complete and ready-to-use biosensor-based analytical solution was proposed offering subpicomolar mercury ion determination with high selectivity (also in aqueous real samples), reusability, and high signal stability even after long-term storage. The developed procedures were successfully used during the miniaturization process with self-prepared (PVD) elastic transducers. The obtained sensor, together with the simplicity of its use, low manufacturing cost, and attractive analytical parameters (i.e., LOD < < Hg2+ WHO limit) can present an interesting alternative for on-site mercury ion detection in environmental samples.


Asunto(s)
Técnicas Biosensibles , Mercurio , Mercurio/química , Oro/química , Agua/química , Azul de Metileno/química , Técnicas Biosensibles/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA