Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
J Biomed Res ; : 1-14, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38808553

Atherosclerosis poses a significant and widespread problem at the population level. Consequently, there is a pressing need to develop effective methods to reduce the risk associated with this condition, which holds a prominent position in cardiology research. The primary manifestation of atherosclerosis involves plaque formation on the walls of coronary arteries. These plaques not only disrupt blood flow but also raise the likelihood of thrombosis and subsequent cardiovascular events. Unfortunately, atherosclerosis itself is usually asymptomatic, resulting in challenges with diagnosis and a delayed initiation of treatment. Hence, strategies focusing on the regression of existing plaques within blood vessels play a crucial role. The present review encompasses comprehensive data on the regression of coronary atherosclerotic plaques, examining both the underlying mechanisms and a range of regression strategies, encompassing lifestyle modifications to medical interventions.

2.
J Biomed Res ; 38(3): 233-240, 2024 May 22.
Article En | MEDLINE | ID: mdl-38777340

Atherosclerosis is extremely widespread. Traditionally, it is considered a disease of older people, who most often experience problems with the heart and blood vessels. While much attention from the scientific community has been paid to studying the association between aging and atherosclerosis, as well as its consequences, there is evidence that atherosclerosis occurs at an early age. Atherosclerosis may form both during intrauterine development and in childhood. Nutrition plays an important role in childhood atherosclerosis, along with previous infectious diseases and excess weight of both the child and the mother. In the present review, we examined the development of atherosclerosis and the prerequisites in childhood.

3.
Curr Pharm Des ; 30(10): 742-756, 2024.
Article En | MEDLINE | ID: mdl-38425105

Lipid metabolism plays an essential role in the pathogenesis of cardiovascular and metabolic diseases. Cholesteryl ester transfer protein (CETP) is a crucial glycoprotein involved in lipid metabolism by transferring cholesteryl esters (CE) and triglycerides (TG) between plasma lipoproteins. CETP activity results in reduced HDL-C and increased VLDL- and LDL-C concentrations, thus increasing the risk of cardiovascular and metabolic diseases. In this review, we discuss the structure of CETP and its mechanism of action. Furthermore, we focus on recent experiments on animal CETP-expressing models, deciphering the regulation and functions of CETP in various genetic backgrounds and interaction with different external factors. Finally, we discuss recent publications revealing the association of CETP single nucleotide polymorphisms (SNPs) with the risk of cardiovascular and metabolic diseases, lifestyle factors, diet and therapeutic interventions. While CETP SNPs can be used as effective diagnostic markers, diet, lifestyle, gender and ethnic specificity should also be considered for effective treatment.


Cardiovascular Diseases , Cholesterol Ester Transfer Proteins , Cholesterol Ester Transfer Proteins/genetics , Cholesterol Ester Transfer Proteins/metabolism , Humans , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/genetics , Animals , Polymorphism, Single Nucleotide , Lipids/blood , Lipid Metabolism/genetics
4.
Front Biosci (Landmark Ed) ; 29(1): 36, 2024 01 19.
Article En | MEDLINE | ID: mdl-38287806

Parkinson's disease (PD) is characterized by the degeneration of the dopaminergic neurons of the corpus striatum, which can be caused by the disruption of processes of mitochondrial homeostasis, including mitophagy, mitochondrial fusion and division, mitochondrial transport, accumulation of reactive oxygen species (ROS), and calcium signaling. Dopaminergic neurons are particularly vulnerable to mitochondrial dysfunction due to their polarized and expanded structure and high bioenergy needs. The molecular basis of these disorders is manifested in mutations of mitochondrial homeostasis proteins. Understanding the functions of these proteins and the disorders caused by these mutations can be used to create therapeutics for the treatment of PD and diagnostic biomarkers of PD. A comprehensive analysis of research papers to identify promising therapeutic targets and drug compounds that target them, as well as biomarkers of mitochondrial dysfunction that can be used in clinical practice for the treatment of PD has been conducted in the current review. This practical approach advantageously emphasizes the difference between this work and other reviews on similar topics. The selection of articles in this review was carried out using the following keyword searches in scientific databases: PubMed, Google Scholar, NSBI, and Cochrane. Next, the most relevant and promising studies were re-selected.


Mitochondrial Diseases , Parkinson Disease , Humans , Parkinson Disease/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Diseases/metabolism , Biomarkers/metabolism
5.
Electrophoresis ; 45(5-6): 411-419, 2024 Mar.
Article En | MEDLINE | ID: mdl-38084469

We developed a method of sensitive capillary electrophoresis using UV detection for the determination of certain free aminothiols (reduced cysteinylglycine (rCysGly), cysteine (rCys), glutathione (rGln), and cystine (CysS) in human blood plasma. The reduced thiols were derivatized with N-ethylmaleimide. The plasma was purified from proteins via ultrafiltration. Electrophoretic separation was performed using 115 mM Na phosphate with 7.5% (v/v) polyethylene glycol 600, pH 2.3. The in-capillary concentration of the analytes was achieved with a pH gradient created via the preinjection of triethanolamine and postinjection of phosphoric acid. The separation was carried out using a silica capillary (50 µm i.d.; total/effective separation length 42/35 cm) at a 25 kV voltage. The total analysis/regeneration time was 18 min. The quantification limits varied from 1.3 µM (rCysGly) to 5.4 µM (CysS). The accuracy was 95%-99%, and the repeatability and reproducibility were approximately 1.8%-3.8% and 1.9%-5.0%, respectively. An analysis of plasma samples from healthy volunteers (N = 41) showed that the mean levels of rCysGly, rCys, rGln, and CysS were 1.64, 10.6, 2.58, and 46.2 µM, respectively.


Cystine , Sulfhydryl Compounds , Humans , Reproducibility of Results , Electrophoresis, Capillary/methods , Amines , Plasma , Hydrogen-Ion Concentration
6.
Cytokine ; 172: 156411, 2023 12.
Article En | MEDLINE | ID: mdl-37918051

OBJECTIVE: Atherosclerosis is characterized by chronic inflammation in the vascular wall. Currently the violation of immune tolerance of innate immune cells is considered as a possible mechanism of chronification of inflammation. The aim of this study is to assess the inflammatory activity and tolerance of monocytes and macrophages in subclinical atherosclerosis. METHODS: A total of 55 individuals free from clinical manifestations of atherosclerosis-associated cardiovascular disease with a presence or absence of atherosclerotic plaques in the carotid arteries were included in this study. CD14+ monocytes were isolated from individuals' blood and stimulated with a single dose of lipopolysaccharide (LPS) on day 1 or with double doses of LPS on day 1 and day 6. The secretion of cytokines TNF, IL-1ß, IL-6, IL-8, IL-10 and CCL2 were evaluated using ELISA. RESULTS: Our findings demonstrate that macrophages derived from LPS-stimulated monocytes in individuals with subclinical atherosclerosis exhibited increased secretion of IL-6, IL-10 and CCL2, which was associated with intima-media thickness, body mass index, but not with individuals' age. Moreover, macrophages from individuals with atherosclerotic plaques exhibited impaired tolerance towards the second LPS stimulation manifested by elevated secretion of the chemoattractant CCL2. CONCLUSION: Increased secretion of these cytokines by macrophages may contribute to chronic local inflammation in the vascular wall by recruiting other immune cells.


Atherosclerosis , Plaque, Atherosclerotic , Humans , Monocytes , Lipopolysaccharides/pharmacology , Interleukin-10 , Interleukin-6 , Carotid Intima-Media Thickness , Macrophages , Cytokines , Inflammation
7.
J Lipid Atheroscler ; 12(3): 223-236, 2023 Sep.
Article En | MEDLINE | ID: mdl-37800111

The proteins of the Wnt family are involved in a variety of physiological processes by means of several canonical and noncanonical signaling pathways. Wnt signaling has been recently identified as a major player in atherogenesis. In this review, we summarize the existing knowledge on the influence of various components of the Wnt signaling pathways on the initiation and progression of atherosclerosis and associated conditions. We used the PubMed database to search for recent papers on the involvement of the Wnt pathways in atherosclerosis. We used the combination of "Wnt" and "atherosclerosis" keywords to find the initial papers, and chose papers published after 2018. In the first section of the paper, we describe the general mechanisms of the Wnt signaling pathways and their components. The next section is dedicated to existing studies assessing the implication of Wnt signaling elements in different atherogenic processes, such as cholesterol retention, endothelial dysfunction, vascular inflammation, and atherosclerotic calcification of the vessels. Lastly, various therapeutic strategies based on interference with the Wnt signaling pathways are considered. We also compare the efficacy and availability of the proposed treatment methods. Wnt signaling can be considered a potential target in the treatment and prevention of atherosclerosis. Therefore, in this review, we reviewed evidences showing that wnt signaling is an important signal for developing appropriate treatment strategies for atherosclerosis.

8.
Front Biosci (Schol Ed) ; 15(3): 10, 2023 09 24.
Article En | MEDLINE | ID: mdl-37806953

Currently, the issue relating to the discussion raised in this article appears to be for what purposes the hepatitis C virus (HCV) modulates cellular processes, such as antiviral defense, metabolism, apoptosis, and mitochondrial dynamics, by inhibiting the activity or expression of mitochondrial proteins and a number of cellular proteins. Additionally, to what pathological changes do these alterations lead? Thus, the aim of this review is to propose potential protein mitochondrial targets of HCV for the future development of new drugs aimed at inhibiting its interaction with cellular proteins. Considering current analyses in the literature, promising targets for the acute and chronic phases of HCV are proposed which include mitochondrial antiviral signaling (MAVS) (antiviral response protein), Parkin (mitophagy protein), Drp1 (mitochondrial fission protein), subunits 1 and 4 of the electron transport chain (ETC) complex (oxidative phosphorylation proteins), among others. This review illustrates how viral strategies for modulating cellular processes involving HCV proteins differ in the acute and chronic phases and, as a result, the complications that arise.


Hepatitis C , Mitochondria , Humans , Mitochondria/metabolism , Mitophagy/physiology , Mitochondrial Proteins/metabolism , Hepatitis, Chronic/metabolism , Antiviral Agents/metabolism , Hepatitis C/metabolism
9.
Curr Issues Mol Biol ; 45(8): 6823-6841, 2023 Aug 16.
Article En | MEDLINE | ID: mdl-37623250

Differential expression of genes (DEGs) in coronary artery disease (CAD) and the association between transcript level and high-density lipoprotein cholesterol (HDL-C) were studied with 76 male patients with CAD and 63 control patients. The transcript level of genes related to HDL metabolism (24 genes) and atherosclerosis-prone (41 genes) in RNA isolated from peripheral blood mononuclear cells was measured by real-time RT-PCR. Twenty-eight DEGs were identified. The expression of cholesterol transporters, ALB, APOA1, and LCAT was down-regulated, while the expression of AMN, APOE, LDLR, LPL, PLTP, PRKACA, and CETP was up-regulated. The systemic inflammation in CAD is evidenced by the up-regulation of IL1B, TLR8, CXCL5, and TNFRSF1A. For the controls, TLR8 and SOAT1 were negative predictors of the HDL-C level. For CAD patients, PRKACG, PRKCQ, and SREBF1 were positive predictors, while PRKACB, LCAT, and S100A8 were negative predictors. For CAD patients, the efficiency of reverse cholesterol transport is 73-79%, and intracellular free cholesterol seems to accumulate at hyperalphalipoproteinemia. Both atheroprotective (via S100A8) and proatherogenic (via SREBF1, LCAT, PRKACG, PRKACB, and PRKCQ) associations of gene expression with HDL-C determine HDL functionality in CAD patients. The selected key genes and involved pathways may represent HDL-specific targets for the diagnosis and treatment of CAD and atherosclerosis.

10.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article En | MEDLINE | ID: mdl-37511509

Atherosclerosis is a major global health problem. Being a harbinger of a large number of cardiovascular diseases, it ultimately leads to morbidity and mortality. At the same time, effective measures for the prevention and treatment of atherosclerosis have not been developed, to date. All available therapeutic options have a number of limitations. To understand the mechanisms behind the triggering and development of atherosclerosis, a deeper understanding of molecular interactions is needed. Heat shock proteins are important for the normal functioning of cells, actively helping cells adapt to gradual changes in the environment and survive in deadly conditions. Moreover, multiple HSP families play various roles in the progression of cardiovascular disorders. Some heat shock proteins have been shown to have antiatherosclerotic effects, while the role of others remains unclear. In this review, we considered certain aspects of the antiatherosclerotic activity of a number of heat shock proteins.


Atherosclerosis , Cardiovascular Diseases , Humans , Heat-Shock Proteins/metabolism , Atherosclerosis/drug therapy , HSP70 Heat-Shock Proteins/metabolism
11.
Mitochondrion ; 72: 11-21, 2023 09.
Article En | MEDLINE | ID: mdl-37453498

Type 1 diabetes mellitus (T1DM) is a T-cell-mediated autoimmune disease characterized by the damage of insulin-secreting ß-cells in the pancreatic islets of Langerhans. To date, its etiology is not fully understood, despite decades of active search for root causes, and that underlines the complexity of the disease pathogenesis. It was found that mitophagy plays a regulatory role in the development of autoimmune response during T1DM pathogenesis by preventing the accumulation of defective/dysfunctional mitochondria in pancreatic cells. Mitochondrial dysfunction due to impaired mitophagy with the release of mitochondrial reactive oxygen species (mtROS) and mitochondrial DNA (mtDNA) contributes to initiating an inflammatory response by elevating pro-inflammatory cytokines and interacting with receptors like those involved in the pathogen-associated response. Moreover, mtROS and mtDNA activate pathways leading to the development of chronic inflammation, which is tightly implicated in T1DM autoimmunity. In this review, we summarized the evidence highlighting the functional role of mitophagy and mitochondria in the development of immune response and chronic inflammation during T1DM pathogenesis. Several anti-inflammatory and mitophagy-related treatment options have been explored.


Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/metabolism , Mitophagy/genetics , Mitochondria/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Inflammation/metabolism , Reactive Oxygen Species/metabolism
12.
J Integr Neurosci ; 22(4): 86, 2023 Jul 03.
Article En | MEDLINE | ID: mdl-37519177

The fight against neurodegenerative diseases is one of the key direction of modern medicine. Unfortunately, the difficulties in understanding the factors underlying the development of neurodegeneration hinder the development of breakthrough therapeutics that can stop or at least greatly slow down the progression of these diseases. In this review, it is considered the disruption of mitochondrial transport as one of the pathogenesis factors contributing to neurodegeneration using the examples of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Here, the mechanism of mitochondrial transport under normal conditions and the mechanisms of disturbances for the indicated diseases will be considered.


Alzheimer Disease , Huntington Disease , Neurodegenerative Diseases , Parkinson Disease , Humans , Mitochondria
13.
Int J Mol Sci ; 24(12)2023 Jun 20.
Article En | MEDLINE | ID: mdl-37373555

Myocardial remodeling is an inevitable risk factor for cardiac arrhythmias and can potentially be corrected with cell therapy. Although the generation of cardiac cells ex vivo is possible, specific approaches to cell replacement therapy remain unclear. On the one hand, adhesive myocyte cells must be viable and conjugated with the electromechanical syncytium of the recipient tissue, which is unattainable without an external scaffold substrate. On the other hand, the outer scaffold may hinder cell delivery, for example, making intramyocardial injection difficult. To resolve this contradiction, we developed molecular vehicles that combine a wrapped (rather than outer) polymer scaffold that is enveloped by the cell and provides excitability restoration (lost when cells were harvested) before engraftment. It also provides a coating with human fibronectin, which initiates the process of graft adhesion into the recipient tissue and can carry fluorescent markers for the external control of the non-invasive cell position. In this work, we used a type of scaffold that allowed us to use the advantages of a scaffold-free cell suspension for cell delivery. Fragmented nanofibers (0.85 µm ± 0.18 µm in diameter) with fluorescent labels were used, with solitary cells seeded on them. Cell implantation experiments were performed in vivo. The proposed molecular vehicles made it possible to establish rapid (30 min) electromechanical contact between excitable grafts and the recipient heart. Excitable grafts were visualized with optical mapping on a rat heart with Langendorff perfusion at a 0.72 ± 0.32 Hz heart rate. Thus, the pre-restored grafts' excitability (with the help of a wrapped polymer scaffold) allowed rapid electromechanical coupling with the recipient tissue. This information could provide a basis for the reduction of engraftment arrhythmias in the first days after cell therapy.


Heart Transplantation , Tissue Engineering , Rats , Animals , Humans , Myocardium/metabolism , Arrhythmias, Cardiac/therapy , Arrhythmias, Cardiac/metabolism , Polymers/metabolism , Cell Transplantation , Tissue Scaffolds/chemistry
14.
Metabolites ; 13(6)2023 Jun 10.
Article En | MEDLINE | ID: mdl-37367901

Coronary artery disease (CAD) and the coronary artery bypass graft (CABG) are associated with a decreased blood glutathione (bGSH) level. Since GSH metabolism is closely related to other aminothiols (homocysteine and cysteine) and glucose, the aim of this study was to reveal the associations of bGSH with glucose and plasma aminothiols in CAD patients (N = 35) before CABG and in the early postoperative period. Forty-three volunteers with no history of cardiovascular disease formed the control group. bGSH and its redox status were significantly lower in CAD patients at admission. CABG had no significant effect on these parameters, with the exception of an increase in the bGSH/hemoglobin ratio. At admission, CAD patients were characterized by negative associations of homocysteine and cysteine with bGSH. All these associations disappeared after CABG. An association was found between an increase in oxidized GSH in the blood in the postoperative period and fasting glucose levels. Thus, CAD is associated with the depletion of the intracellular pool and the redox status of bGSH, in which hyperhomocysteinemia and a decrease in the bioavailability of the extracellular pool of cysteine play a role. The present study indicates that CABG causes disruptions in aminothiol metabolism and induces the synthesis of bGSH. Moreover, glucose becomes an important factor in the dysregulation of GSH metabolism in CABG.

15.
Cells ; 12(7)2023 04 02.
Article En | MEDLINE | ID: mdl-37048145

Mitochondrial dysfunction is a described phenomenon for a number of chronic and infectious diseases. At the same time, the question remains open: is this condition a consequence or a cause of the progression of the disease? In this review, we consider the role of the development of mitochondrial dysfunction in the progression of HIV (human immunodeficiency viruses) infection and the onset of AIDS (acquired immunodeficiency syndrome), as well as the direct impact of HIV on mitochondria. In addition, we will touch upon such an important issue as the effect of ART (Antiretroviral Therapy) drugs on mitochondria, since ART is currently the only effective way to curb the progression of HIV in infected patients, and because the identification of potential side effects can help to more consciously approach the development of new drugs in the treatment of HIV infection.


Acquired Immunodeficiency Syndrome , HIV Infections , Humans , HIV Infections/drug therapy , HIV , T-Lymphocytes , Mitochondria
16.
Biomedicines ; 11(2)2023 Jan 18.
Article En | MEDLINE | ID: mdl-36830787

Platelets are one of the main participants in vascular accidents in cases of coronary heart disease (CHD). In this study, we sought to detect platelet apoptosis in patients with coronary artery disease who underwent scheduled myocardial revascularization surgery. To identify apoptotic events, we analyzed phosphatidylserine (PS) expression on the surface of platelets and mitochondrial membrane potential (ΔΨm) by flow cytometry in two groups of 30 patients aged 45-60 years: Group 1-patients before myocardial revascularization surgery and group 2-patients after myocardial revascularization surgery. The control group consisted of 10 healthy volunteers aged 45-60 years. According to our data, the percentage levels of PS expression in patients greatly decreased after surgery. We confirmed platelet apoptosis by recording depolarization of ΔΨm in pre- and postoperative patients. ΔΨm readings were considerably improved after surgery. Our data indicated that the functional parameters of platelets in patients with coronary heart disease differed from the characteristics of platelets in patients who underwent myocardial revascularization, and from those of patients in a control group. Future studies of platelet phenotypic characteristics and platelet apoptosis biomarkers should greatly advance our understanding of the pathophysiology of coronary heart disease, and further promote the development of methods for predicting adverse outcomes after surgery.

17.
Nanomaterials (Basel) ; 13(4)2023 Feb 10.
Article En | MEDLINE | ID: mdl-36839063

We observed resonance effects in the Raman scattering of nanodiamonds with an average size of 2-5 nm excited at a wavelength of 1064 nm (1.16 eV). The resonant Raman spectrum of the 2-5 nm nanodiamonds consists of bands at wavelengths of 1325 and 1600 cm-1, a band at 1100-1250 cm-1, and a plateau in the range from 1420 to 1630 cm-1. When excited away from the resonance (at a wavelength of 405 nm, 3.1 eV), the Raman spectrum consists of only three bands at 1325, 1500, and 1600 cm-1. It is important to note that the additional lines (1500 and 1600 cm-1) belong to the sp3-hybridized carbon bonds. The phonon density of states for the nanodiamonds (~1 nm) was calculated using moment tensor potentials (MTP), a class of machine-learning interatomic potentials. The presence of these modes in agreement with the lattice dynamics indicates the existence of bonds with force constants higher than in single-crystal diamonds. The observed resonant phenomena of the Raman scattering and the increase in the bulk modulus are explained by the presence of Tamm states with an energy of electronic transitions of approximately 1 eV, previously observed on the surface of single-crystal diamonds.

18.
Front Immunol ; 14: 1309015, 2023.
Article En | MEDLINE | ID: mdl-38173718

Exosomes are natural extracellular vesicles that play a key role in inter- and intracellular communication. Currently they are considered as a promising therapeutic strategy for the treatment of various diseases. In osteoimmunology, exosomes can serve as biomarkers of bone homeostasis disorders and, at the same time, promising therapeutic agents with high stability in the biological environment, low immunogenicity and good bioavailability. In this review, we attempted to examine exosomes as natural mediators of intercellular communication, playing an essential role in the interaction of the immune system and bone tissue, based on an analysis of the PubMed database up to October 2023.


Exosomes , Extracellular Vesicles , Cell Communication , Biomarkers , Immune System
19.
Consort Psychiatr ; 4(2): 79-90, 2023 Jul 10.
Article En | MEDLINE | ID: mdl-38250648

BACKGROUND: A substantial increase in the prevalence of eating disorders has been noticed over the past decades. Priority in the treatment of eating disorders is justifiably given to psychosocial interventions. However, it is also well known that centrally acting drugs can significantly affect appetite and food consumption. AIM: To narratively review the available neurobiological data on the mechanisms of central regulation of eating behavior as a rationale to summarize pharmacological strategies for appetite modulation in eating disorders. METHODS: The authors have carried out a narrative review of scientific papers published from January 2013 to March 2023 in the PubMed and Web of Science electronic databases. Studies were considered eligible if they included data on the neurobiological mechanisms of appetite regulation or the results of clinical trials of centrally acting drugs in eating disorders. Relevant studies were included regardless of their design. Descriptive analysis was used to summarize the obtained data. RESULTS: The review included 51 studies. The available neurobiological and clinical data allowed us to identify the following pharmacological strategies for appetite modulation in eating disorders: serotonergic, catecholaminergic, amino acidergic and peptidergic. However, implementation of these data into clinical practice difficult due to an insufficient number of good-quality studies, which is particularly relevant for adolescents as there is a research gap in this population. CONCLUSION: The progress in neurobiological understanding of the mechanisms of central regulation of appetite opens opportunities for new pharmacotherapeutic approaches aimed at changing the patterns of eating behavior. Obviously, treatment of eating disorders is a much broader problem and cannot be reduced to the correction of eating patterns. Nevertheless, at certain stages of treatment, drug-induced modulation of appetite can play an important role among multi-targeted biological and psychosocial interventions. Translation of neurobiological data into clinical practice requires a large number of clinical studies to confirm the long-term efficacy and safety of pharmacotherapeutic approaches and to develop personalized algorithms for the treatment of various forms of eating disorders in different age groups.

20.
Electrophoresis ; 43(18-19): 1859-1870, 2022 10.
Article En | MEDLINE | ID: mdl-35833250

A new approach has been developed for the direct determination of reduced (glutathione [GSH]) and oxidized (glutathione disulfide [GSSG]) GSH in whole blood by means of capillary electrophoresis. Its features include GSH-stabilizing sample preparation, the use of an internal standard, and pH-mediated stacking. Blood stabilized with acid citrate and K3 EDTA was treated with acetonitrile with N-ethylmaleimide, and then the analytes were extracted with diethyl ether. The total analysis time was 8 min using a 50-µm (i.d.) by 32.5-cm (eff. length) silica capillary. The background electrolyte was 0.075-M citrate Na pH 5.8 with 200-µM cetyltrimethylammonium bromide and 5-µM sodium dodecyl sulfate, and the separation voltage was -14 kV. The quantification limit (S/N = 15) of the method was 1.5 µM for GSSG. The accuracy levels of GSH and GSSG analysis were 104% and 103%, respectively, and between-run precision levels were 2.6% and 3.2%, respectively. Analysis of blood samples from healthy volunteers (N = 24) showed that the levels of GSH and GSSG and the GSH/GSSG ratio in the whole blood were 1.05 ± 0.14 mM, 3.9 ± 1.25 µM, and 256 ± 94, respectively. Thus, the presented approach can be used in clinical and laboratory practice.


Ether , Glutathione , Acetonitriles , Cetrimonium , Citrates , Edetic Acid , Electrophoresis, Capillary/methods , Ethylmaleimide , Glutathione/analysis , Glutathione Disulfide/analysis , Humans , Hydrogen-Ion Concentration , Silicon Dioxide , Sodium Dodecyl Sulfate
...