Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 73
1.
Cancers (Basel) ; 16(11)2024 May 31.
Article En | MEDLINE | ID: mdl-38893230

Patients with pancreatic cancer (PC) showing mismatch repair (MMR) deficiency may benefit from immunotherapy. Microsatellite instability (MSI) is a hallmark of MMR deficiency (MMR-D). Here, we estimated the prevalence of MSI in PC, investigated germline and somatic mutations in the three MMR genes (MLH1, MSH2, and MSH6), and assessed the relationship between MMR genes mutations and MSI status in PC. Clinical specimens from PC patients were analyzed using targeted next-generation sequencing, including paired normal and tumor specimens from 155 patients, tumor-only specimens from 86 patients, and normal-only specimens from 379 patients. The MSI status of 235 PCs was assessed via PCR. Pathogenic/likely pathogenic (P/LP) germline variants in the MMR genes were identified in 1.1% of patients, while somatic variants were found in 2.6% of patients. No MSI-H tumors were detected. One patient carried two variants (P (VAF = 0.57) and LP (VAF = 0.25)) simultaneously; however, their germline/somatic status remains unknown due to the investigation focusing solely on the tumor and MSI analysis was not performed for this patient. MSI is rare in PC, even in tumors with MMR genes mutations. Our findings underscore the importance of assessing tumor MMR-D status in PC patients with confirmed Lynch syndrome when deciding whether to prescribe immunotherapy.

2.
bioRxiv ; 2024 May 11.
Article En | MEDLINE | ID: mdl-38765983

Ribosomal RNA modifications in prokaryotes have been sporadically studied, but there is a lack of a comprehensive picture of modification sites across bacterial phylogeny. B. subtilis is a preeminent model organism for gram-positive bacteria, with a well-annotated and editable genome, convenient for fundamental studies and industrial use. Yet remarkably, there has been no complete characterization of its rRNA modification inventory. By expanding modern MS tools for the discovery of RNA modifications, we found a total of 25 modification sites in 16S and 23S rRNA of B. subtilis, including the chemical identity of the modified nucleosides and their precise sequence location. Furthermore, by perturbing large subunit biogenesis using depletion of an essential factor RbgA and measuring the completion of 23S modifications in the accumulated intermediate, we provide a first look at the order of modification steps during the late stages of assembly in B. subtilis. While our work expands the knowledge of bacterial rRNA modification patterns, adding B. subtilis to the list of fully annotated species after E. coli and T. thermophilus, in a broader context, it provides the experimental framework for discovery and functional profiling of rRNA modifications to ultimately elucidate their role in ribosome biogenesis and translation.

3.
Small ; : e2307215, 2024 Jan 22.
Article En | MEDLINE | ID: mdl-38258390

The development of miniaturized high-throughput in situ screening platforms capable of handling the entire process of drug synthesis to final screening is essential for advancing drug discovery in the future. In this study, an approach based on combinatorial solid-phase synthesis, enabling the efficient synthesis of libraries of proteolysis targeting chimeras (PROTACs) in an array format is presented. This on-chip platform allows direct biological screening without the need for transfer steps.  UV-induced release of target molecules into individual droplets facilitates further on-chip experimentation. Utilizing a mitogen-activated protein kinase kinases (MEK1/2) degrader as a template, a series of 132 novel PROTAC-like molecules is synthesized using solid-phase Ugi reaction. These compounds are further characterized using various methods, including matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) imaging, while consuming only a few milligrams of starting materials in total. Furthermore, the feasibility of culturing cancer cells on the modified spots and quantifying the effect of MEK suppression is demonstrated. The miniaturized synthesis platform lays a foundation for high-throughput in situ biological screening of potent PROTACs for potential anticancer activity and offers the potential for accelerating the drug discovery process by integrating miniaturized synthesis and biological steps on the same array.

4.
Biodivers Data J ; 12: e114682, 2024.
Article En | MEDLINE | ID: mdl-38222480

Background: Enchytraeids, or potworms, are tiny oligochaetes that are distributed worldwide in many terrestrial, freshwater and marine ecosystems. Despite their key role in the functioning of ecosystems, the diversity and abundance of Enchytraeidae are rarely studied due to the laborious process of species identification. The present study addresses this gap and sheds some light on the distribution and abundance of enchytraeids in the lands of the Northern Palearctic. The provided dataset constitutes the latest and comprehensive field sampling of enchytraeid assemblages across the Asiatic part of the Northern Palearctic, encompassing an original set of soil samples systematically collected throughout the region from 2019 to 2022. New information: The dataset includes occurrences from 131 georeferenced sites, encompassing 39 species and 7,074 records. This represents the first dataset providing species-specific information about the distribution and abundance of terrestrial enchytraeids across an extensive geographic area covering the Asian sector of the Northern Palaearctic. The compiled dataset is the key for exploring and understanding local and regional enchytraeid diversity. It may also serve as a valuable resource for monitoring and conserving the entire soil biodiversity.

5.
SLAS Technol ; 29(1): 100118, 2024 Feb.
Article En | MEDLINE | ID: mdl-37981010

The Droplet Microarray (DMA) has emerged as a tool for high-throughput biological and chemical applications by enabling miniaturization and parallelization of experimental processes. Due to its ability to hold hundreds of nanoliter droplets, the DMA enables simple screening and analysis of samples such as cells and biomolecules. However, handling of nanoliter volumes poses a challenge, as manual recovery of nanoliter volumes is not feasible, and traditional laboratory equipment is not suited to work with such low volumes, and small array formats. To tackle this challenge, we developed the Automated Nanoliter Droplet Selection device (ANDeS), a robotic system for automated collection and transfer of nanoliter samples from DMA. ANDeS can automatically collect volumes from 50 to 350 nL from the flat surface of DMA with a movement accuracy of ±30 µm using fused silica capillaries. The system can automatically collect and transfer the droplets from DMA chip into other platforms, such as microtiter plates, conical tubes or another DMA. In addition, to ensure high throughput and multiple droplet collection, the uptake of multiple droplets within a single capillary, separated by air gaps to avoid mixing of the samples within the capillary, was optimized and demonstrated. This study shows the potential of ANDeS in laboratory applications by using it for the collection and transfer of biological samples, contained in nanoliter droplets, for subsequent analysis. The experimental results demonstrate the ability of ANDeS to increase the versatility of the DMA platform by allowing for automated retrieval of nanoliter samples from DMA, which was not possible manually on the level of individual droplets. Therefore, it widens the variety of analytical techniques that can be used for the analysis of content of individual droplets and experiments performed using DMA. Thus, ANDeS opens up opportunities to expand the development of miniaturized assays in such fields as cell screening, omics analysis and combinatorial chemistry.


Miniaturization
6.
Materials (Basel) ; 16(23)2023 Nov 24.
Article En | MEDLINE | ID: mdl-38068057

The article reveals for the first time the features of nanoparticle morphology, phase compositions, and their changes when heating FePt and CoPt nanoalloys. Nanoparticles were obtained by co-reduction of precursor solution mixtures with hydrazine hydrate. The features were found by a complex of methods of X-ray diffraction (in situ XRD and X-ray scattering), TEM HR, and cyclic voltammetry. In addition, adsorbometry results were obtained, and the stability of different nanocluster structures was calculated by the molecular dynamics method. There were only FCC solid solutions in the X-ray patterns of the FePt and CoPt nanoalloys. According to XRD, in the case of nanoparticle synthesis with Fe and Co content less than 10 at. %, the composition of solid solutions was close to or practically equal to the composition of the as-synthesized nanoparticles quantified by inductively coupled plasma optical emission spectrometry. For systems synthesis with Fe and Co content greater than the above, the solubility limits (SLs) of Fe and Co in Pt were set 11.4 ± 0.7 at. % and 17.5 ± 0.6 at. %, respectively. Therefore, there were non-registered XRD extra-phases (XRNDPh-1) in the systems when CFe,Co ≥ SL. This statement was supported by the results of TEM HR and X-ray scattering: the smallest nanocrystals (1-2 nm) and amorphous particles were found, which qualitatively agreed with the sorbometry and SAXS results. Molecular dynamics calculations of stability for FePt and CoPt alloys claimed the structures of the most stable phase corresponded to phase diagrams (A1 and L12). Specific peculiarities of the morphology and compositions of the solid solutions of nanoalloys were established: structural blockiness (domain) and composition heterogeneity, namely, platinum enrichment of internal (deep) layers and homogenization of the nanoalloy compositions at relatively low temperatures (130-200 °C). The suggested model of the formation of nanoalloys during the synthesis, qualitatively, was compliant with the results of electrochemical deposition of FePt films on the surface of various electrodes. When nanocrystals of solid solutions (C(Fe, Co) < SL) were heated above specific temperatures, there were phase transformations with the formation of two-phase regions, with solid solutions enriched with platinum or iron (non-registered XRD phase XRNDPh-2). The newly formed phase was most likely intermetallic compounds, FePt3, CoPt3. As a result of the study, the model was developed, taking into account the nanoscale of the particles: XRDPh (A1, FeaPt1-a) → XRDPh (A1, Fem×a-xPtm-m×a+x) + XRNDPh-2 (Fen×a+yPtn-n×a-y) (here, m + n = 1, m ≤ 1, n ≤ 1).

7.
Nanomaterials (Basel) ; 13(22)2023 Nov 09.
Article En | MEDLINE | ID: mdl-37999277

Nanocomposites based on ferromagnetic nickel nanoparticles and graphene-related materials are actively used in various practical applications such as catalysis, sensors, sorption, etc. Therefore, maintaining their dispersity and homogeneity during deposition onto the reduced graphene oxide substrate surface is of crucial importance to provide the required product characteristics. This paper demonstrates a new, reproducible method for preparing a tailored composite based on nickel nanoparticles on the reduced graphene oxide surface using supercritical isopropanol treatment. It has been shown that when a graphene oxide film with previously incorporated Ni2+ salt is treated with isopropanol at supercritical conditions, nickel (2+) is reduced to Ni (0), with simultaneous deoxygenation of the graphene oxide substrate. The resulting composite is a solid film exhibiting magnetic properties. XRD, FTIR, Raman, TEM, and HRTEM methods were used to study all the obtained materials. It was shown that nickel nanoparticles on the surface of the reduced graphene oxide had an average diameter of 27 nm and were gradually distributed on the surface of reduced graphene oxide sheets. The data obtained allowed us to conduct a reconnaissance discussion of the mechanism of composite fabrication in supercritical isopropanol.

8.
Viruses ; 15(11)2023 Oct 30.
Article En | MEDLINE | ID: mdl-38005859

Introduction: The COVID-19 pandemic has become a serious challenge for humanity almost everywhere globally. Despite active vaccination around the world, the incidence proportion in different countries varies significantly as of May 2022. The reason may be a combination of demographic, immunological, and epidemiological factors. The purpose of this study was to analyze possible relationships between COVID-19 incidence proportion in the population and the types of SARS-CoV-2 vaccines used in different countries globally, taking into account demographic and epidemiological factors. Materials and methods: An initial database was created of demographic and immunoepidemiological information about the COVID-19 situation in 104 countries collected from published official sources and repository data. The baseline included, for each country, population size and density; SARS-CoV-2 testing coverage; vaccination coverage; incidence proportion; and a list of vaccines that were used, including their relative share among all vaccinations. Subsequently, the initial data set was stratified by population and vaccination coverage. The final data set was subjected to statistical processing both in general and taking into account population testing coverage. Results: After formation of the final data set (including 53 countries), it turned out that reported COVID-19 case numbers correlated most strongly with testing coverage and the proportions of vaccine types used, specifically, mRNA (V1); vector (V2); peptide/protein (V3); and whole-virion/inactivated (V4). Due to the fact that an inverse correlation was found between 'reported COVID-19 case numbers' with V2, V3, and V4, these three vaccine types were also combined into one analytic group, 'non-mRNA group' vaccines (Vnmg). When the relationship between vaccine type and incidence proportion was examined, minimum incidence proportion was noted at V1:Vnmg ratios (%:%) from 0:100 to 30:70. Maximum incidence proportion was seen with V1:Vnmg from 80:20 to 100:0. On the other hand, we have shown that the number of reported COVID-19 cases in different countries largely depends on testing coverage. To offset this factor, countries with low and extremely high levels of testing were excluded from the data set; it was then confirmed that the largest number of reported COVID-19 cases occurred in countries with a dominance of V1 vaccines. The fewest reported cases were seen in countries with a dominance of Vnmg vaccines. Conclusion: In this paper, we have shown for the first time that the level of reported COVID-19 incidence proportion depends not only on SARS-CoV-2 testing and vaccination coverage, which is quite logical, but probably also on the vaccine types used. With the same vaccination level and testing coverage, those countries that predominantly use vector and whole-virion vaccines feature incidence proportion that is significantly lower than countries that predominantly use mRNA vaccines.


COVID-19 , Vaccines , Humans , Vaccination Coverage , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Incidence , COVID-19 Testing , Pandemics , SARS-CoV-2/genetics , Vaccination , mRNA Vaccines
9.
Front Oncol ; 13: 1207935, 2023.
Article En | MEDLINE | ID: mdl-37614503

Introduction: Cervical cancer (CC) is a prevalent malignancy affecting women globally. The primary causative factor of CC is the high-risk oncogenic human papillomavirus (HR-HPV). However, it is noteworthy that not all women infected with HR-HPV develop cancer, indicating the potential involvement of genetic predisposition in the development of CC. This study aims to identify genetic risks and their distribution in groups of women with different epidemiological features of HR-HPV. Materials and methods: A comparison was conducted among four groups of women, comprising 218 HPV-negative women, 120 HPV-positive women, 191 women diagnosed with cervical intraepithelial neoplasia (CIN) grade 2 or 3, and 124 women diagnosed with CC. The analysis focused on four single nucleotide polymorphisms (SNPs): rs55986091 in HLA-DQB1, rs138446575 in TTC34, rs1048943 in CYP1A1, and rs2910164 in miRNA-146a. Results: The rs55986091-A allele exhibited a protective effect within the "CC" group when compared to the "HPV-Negative" group (OR = 0.4, 95% CI= 0.25-0.65) using a log-additive model. Additionally, similar protective effects were observed in the "CIN 2/3" group compared to the "HPV-Negative" group (OR = 0.47, 95% CI = 0.28-0.79). Conclusion: The data obtained emphasize the importance of developing PCR-based diagnostic kits for the identification of SNP alleles, particularly for rs55986091, among HR-HPV-positive women within the Russian population.

10.
Pathogens ; 12(7)2023 Jun 29.
Article En | MEDLINE | ID: mdl-37513734

A misdiagnosis of isolated pulmonary tuberculosis (pTB) is highly likely when a patient has nontuberculous mycobacterial pulmonary disease (NTMPD) or a combination of nontuberculous mycobacterium pulmonary disease and pulmonary tuberculosis. Frequently, bacterial excretion is absent or only Mycobacteria tuberculosis (MBT) is found. This often results in an incorrect diagnosis and subsequent misinformed treatment regimes. In order to determine possible clinical and radiographic differences between patients with NTMPD (Group 1), destructive drug-resistant pulmonary tuberculosis (Group 3) and a combination of NTMPD and pTB (Group 2) we compare clinical and radiographic signs for these three patient groups. When comparing with Group 3 (2.5%), Groups 1 (25%) and 2 (17.4%) have a substantially higher incidence of pulmonary haemorrhages. Thus, upon clinically observing the combination of pTB and NTMPD, there are no pathognomonic clinical and radiographic detected symptoms. However, the presence of an indolent course, hemoptysis and bronchiectasis in the presence of acid-fast bacteria (or identified MBT) in the sputum makes it possible to suspect not simple pTB, but a combination of pTB and NTMPD. To clarify this necessitated in-depth bacteriological examination.

12.
Adv Healthc Mater ; 12(24): e2300591, 2023 09.
Article En | MEDLINE | ID: mdl-37162029

To address the challenge of drug resistance and limited treatment options for recurrent gliomas with IDH1 mutations, a highly miniaturized screening of 2208 FDA-approved drugs is conducted using a high-throughput droplet microarray (DMA) platform. Two patient-derived temozolomide-resistant tumorspheres harboring endogenous IDH1 mutations (IDH1mut ) are utilized. Screening identifies over 20 drugs, including verteporfin (VP), that significantly affected tumorsphere formation and viability. Proteomics analysis reveals that nuclear pore complex may be a potential VP target, suggesting a new mechanism of action independent of its known effects on YAP1. Knockdown experiments exclude YAP1 as a drug target in tumorspheres. Pathway analysis shows that NUP107 is a potential upstream regulator associated with VP response. Analysis of publicly available genomic datasets shows a significant correlation between high NUP107 expression and decreased survival in IDH1mut astrocytoma, suggesting NUP107 may be a potential biomarker for VP response. This study demonstrates a miniaturized approach for cost-effective drug repurposing using 3D glioma models and identifies nuclear pore complex as a potential target for drug development. The findings provide preclinical evidence to support in vivo and clinical studies of VP and other identified compounds to treat IDH1mut gliomas, which may ultimately improve clinical outcomes for patients with this challenging disease.


Brain Neoplasms , Glioma , Humans , Temozolomide/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Drug Repositioning , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Isocitrate Dehydrogenase/therapeutic use , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism
13.
PLoS Negl Trop Dis ; 17(4): e0011279, 2023 04.
Article En | MEDLINE | ID: mdl-37099617

In 2021, a patient died from Marburg virus (MARV) disease in Guinea and it was the first confirmed case in West Africa. The origin of the outbreak has not been identified. It was revealed that the patient didn't travel anywhere before the illness. Prior to outbreak, MARV had been found in bats in the neighboring Sierra Leone, but never in Guinea. Therefore, the origin of infection is unclear: was it an autochthonous case with spillover from a local population of bats or an imported case with spillover from fruit bats foraging/migrating from Sierra Leone? In this paper, we studied Rousettus aegyptiacus in Guinea as the possible source of MARV infection caused the patient death in 2021 in Guinea. We caught bats in 32 sites of Guéckédou prefecture, including seven caves and 25 locations of the flight path. A total of 501 fruit bats (Pteropodidae) were captured, including 66 R. aegyptiacus. The PCR screening showed three positive MARV R. aegyptiacus, roosting in two caves discovered in Guéckédou prefecture. After Sanger sequencing and phylogenetic analyses it was shown that found MARV belongs to the Angola-like lineage but it is not identical to the isolate obtained during the outbreak of 2021.


Chiroptera , Marburg Virus Disease , Marburgvirus , Animals , Humans , Guinea/epidemiology , Marburgvirus/genetics , Phylogeny , Egypt , Marburg Virus Disease/epidemiology , Disease Outbreaks
14.
Nucleic Acids Res ; 51(6): 2862-2876, 2023 04 11.
Article En | MEDLINE | ID: mdl-36864669

Understanding the assembly principles of biological macromolecular complexes remains a significant challenge, due to the complexity of the systems and the difficulties in developing experimental approaches. As a ribonucleoprotein complex, the ribosome serves as a model system for the profiling of macromolecular complex assembly. In this work, we report an ensemble of large ribosomal subunit intermediate structures that accumulate during synthesis in a near-physiological and co-transcriptional in vitro reconstitution system. Thirteen pre-50S intermediate maps covering the entire assembly process were resolved using cryo-EM single-particle analysis and heterogeneous subclassification. Segmentation of the set of density maps reveals that the 50S ribosome intermediates assemble based on fourteen cooperative assembly blocks, including the smallest assembly core reported to date, which is composed of a 600-nucleotide-long folded rRNA and three ribosomal proteins. The cooperative blocks assemble onto the assembly core following defined dependencies, revealing the parallel pathways at both early and late assembly stages of the 50S subunit.


RNA, Ribosomal , Ribosomes , Ribosomes/genetics , Ribosomes/metabolism , RNA, Ribosomal/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Large/metabolism
15.
Sci Rep ; 13(1): 5107, 2023 03 29.
Article En | MEDLINE | ID: mdl-36991084

Cancer is a devastating disease and the second leading cause of death worldwide. However, the development of resistance to current therapies is making cancer treatment more difficult. Combining the multi-omics data of individual tumors with information on their in-vitro Drug Sensitivity and Resistance Test (DSRT) can help to determine the appropriate therapy for each patient. Miniaturized high-throughput technologies, such as the droplet microarray, enable personalized oncology. We are developing a platform that incorporates DSRT profiling workflows from minute amounts of cellular material and reagents. Experimental results often rely on image-based readout techniques, where images are often constructed in grid-like structures with heterogeneous image processing targets. However, manual image analysis is time-consuming, not reproducible, and impossible for high-throughput experiments due to the amount of data generated. Therefore, automated image processing solutions are an essential component of a screening platform for personalized oncology. We present our comprehensive concept that considers assisted image annotation, algorithms for image processing of grid-like high-throughput experiments, and enhanced learning processes. In addition, the concept includes the deployment of processing pipelines. Details of the computation and implementation are presented. In particular, we outline solutions for linking automated image processing for personalized oncology with high-performance computing. Finally, we demonstrate the advantages of our proposal, using image data from heterogeneous practical experiments and challenges.


Algorithms , Neoplasms , Humans , Image Processing, Computer-Assisted/methods , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Computer Systems , Learning
16.
Antioxidants (Basel) ; 11(10)2022 Sep 30.
Article En | MEDLINE | ID: mdl-36290690

The red raspberry is one of the world's most popular berries. The main direction of its breeding has switched to nutritional quality, and the evaluation of raspberry germplasm for antioxidant content and activity is very important. As berries, raspberry leaves contain valuable bioactive compounds, but the optimal time for their collection is unknown. We evaluated 25 new breeding lines and standard raspberry cultivars for their polyphenolic content and antioxidant capacity. The antioxidant activity of berries correlated better with the content of total phenolics (0.88 and 0.92) and flavonoids (0.76 and 0.88) than with anthocyanins (0.37 and 0.66). Two breeding lines were significantly superior to the standard cultivars and can be used in further breeding. Leaves collected in three phenological phases of the raspberry contained more phenolics (5.4-fold) and flavonoids (4.1-fold) and showed higher antioxidant activities (2.4-fold in FRAP assay, 2.2-fold in ABTS) than berries. The optimal time for harvesting raspberry leaves is the fruit ripening stage, with exceptions for some cultivars. Genetic diversity analysis using microsatellite (SSR) markers from flavonoid biosynthesis genes divided the genotypes into five clusters, generally in agreement with their kinships. The relationship between genetic data based on metabolism-specific SSR markers and the chemical diversity of cultivars was first assessed. The biochemical and genetic results show a strong correlation (0.78). This study is useful for further the improvement of raspberry and other berry crops.

17.
Ann Transplant ; 27: e936751, 2022 Sep 06.
Article En | MEDLINE | ID: mdl-36065144

BACKGROUND Kidney transplantation is the treatment of choice for most patients with end-stage renal disease. To improve patient and transplant survival, non-invasive diagnostic methods for different pathologies are important. Leucine-rich alpha-2-glycoprotein (LRG-1) is an innovative biomarker that is elevated in cases of angiogenesis, inflammation, and kidney injury. However, there are limited data about the diagnostic role of LRG-1 in kidney transplant recipients. The aim of this study was to evaluate the association between serum LRG-1, urine LRG-1, and kidney transplant function and injury. MATERIAL AND METHODS We enrolled 35 kidney transplant recipients in the study. LRG-1 in the serum and urine was detected using ELISA. We evaluated the correlation of serum and urine LRG-1 with traditional serum and urine kidney injury markers. RESULTS A higher level of serum LRG-1 correlates with a higher level of urine LRG-1. Serum LRG-1 has a positive correlation with transplant age, serum urea, serum creatinine, serum cystatin C, proteinuria, and fractional excretion of sodium (FENa) and a negative correlation with hemoglobin and estimated glomerular filtration rate (eGFR). Urine LRG-1 has a positive correlation with serum cystatin C, proteinuria, and urine neutrophil gelatinase-associated lipocalin (NGAL). CONCLUSIONS Higher levels of serum and urine LRG-1 are associated with kidney transplant injury and functional deterioration. Thus, LRG-1 might be also as a biomarker for tubular dysfunction in patients after kidney transplantation.


Cystatin C , Glycoproteins/analysis , Kidney Transplantation , Biomarkers , Glycoproteins/urine , Humans , Kidney , Kidney Transplantation/adverse effects , Leucine , Proteinuria
18.
Adv Healthc Mater ; 11(18): e2200718, 2022 09.
Article En | MEDLINE | ID: mdl-35799451

Human induced pluripotent stem cells (hiPSCs) are crucial for disease modeling, drug discovery, and personalized medicine. Animal-derived materials hinderapplications of hiPSCs in medical fields. Thus, novel and well-defined substrate coatings capable of maintaining hiPSC pluripotency are important for advancing biomedical applications of hiPSCs. Here a miniaturized droplet microarray (DMA) platform to investigate 11 well-defined proteins, their 55 binary and 165 ternary combinations for their ability to maintainpluripotency of hiPSCs when applied as a surface coating, is used. Using this screening approach, ten protein group coatings are identified, which promote significantly higher NANOG expression of hiPSCs in comparison with Matrigel coating. With two of the identified coatings, long-term pluripotency maintenance of hiPSCs and subsequent differentiation into three germ layers are achieved. Compared with conventional high-throughput screening (HTS) in 96-well plates, the DMA platform uses only 83 µL of protein solution (0.83 µg total protein) and only ≈2.8 × 105 cells, decreasing the amount of proteins and cells ≈860 and 25-fold, respectively. The identified proteins will be essential for research and applications using hiPSCs, while the DMA platform demonstrates great potential for miniaturized HTS of scarce cells or expensive materials such as recombinant proteins.


Induced Pluripotent Stem Cells , Animals , Cell Differentiation , Humans , Microarray Analysis , Recombinant Proteins/metabolism
19.
Med Microbiol Immunol ; 211(4): 195-210, 2022 Aug.
Article En | MEDLINE | ID: mdl-35780233

In the fight against coronavirus infection, control of the immune response is of decisive importance, an important component of which is the seroprevalence of antibodies to SARS-CoV-2. Immunity to SARS-CoV-2 is formed either naturally or artificially through vaccination. The purpose of this study was to assess the seroprevalence of antibodies to SARS-CoV-2 in the population of Kyrgyzstan. A cross-sectional randomized study of seroprevalence was carried out according to a program developed by Rospotrebnadzor and the St. Petersburg Pasteur Institute, taking into account WHO recommendations. The ethics committees of the Association of Preventive Medicine (Kyrgyzstan) and the St. Petersburg Pasteur Institute (Russia) approved the study. Volunteers (9471) were recruited, representing 0.15% (95% CI 0.14-0.15) of the total population, randomized by age and region. Plasma antibodies (Abs) to the nucleocapsid antigen (Nag) were determined. In vaccinated individuals, Abs to the SARS-CoV-2 receptor-binding domain antigen (RBDag) were determined. Differences were considered statistically significant at p < 0.05. The SARS-CoV-2 Nag Ab seroprevalence was 48.7% (95% CI 47.7-49.7), with a maximum in the 60-69 age group [59.2% (95% CI 56.6-61.7)] and a minimum in group 1-17 years old [32.7% (95 CI: 29.4-36.1)]. The highest proportion of seropositive individuals was in the Naryn region [53.3% (95% CI 49.8-56.8)]. The lowest share was in Osh City [38.1% (95% CI 32.6-43.9)]. The maximum SARS-CoV-2 Nag seropositivity was found in the health-care sector [57.1% (95% CI 55.4-58.8)]; the minimum was seen among artists [38.6% (95% CI 26.0-52.4)]. Asymptomatic SARS-CoV-2 Nag seropositivity was 77.1% (95% CI 75.6-78.5). Vaccination with Sputnik V or Sinopharm produced comparable Ab seroprevalence. SARS-CoV-2 Nag seropositivity in the Kyrgyz population was 48.75% (95% CI 47.7-49.7), with the mass vaccination campaign undoubtedly benefitting the overall situation.


COVID-19 , Immunity, Herd , SARS-CoV-2 , Adolescent , Antibodies, Viral , COVID-19/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Humans , Infant , Kyrgyzstan/epidemiology , Seroepidemiologic Studies
20.
Adv Biol (Weinh) ; 6(12): e2200166, 2022 12.
Article En | MEDLINE | ID: mdl-35843867

Multidrug-resistant (MDR) bacteria is a severe threat to public health. Therefore, it is urgent to establish effective screening systems for identifying novel antibacterial compounds. In this study, a highly miniaturized droplet microarray (DMA) based high-throughput screening system is established to screen over 2000 compounds for their antimicrobial properties against carbapenem-resistant Klebsiella pneumoniae and methicillin resistant Staphylococcus aureus (MRSA). The DMA consists of an array of hydrophilic spots divided by superhydrophobic borders. Due to the differences in the surface wettability between the spots and the borders, arrays of hundreds of nanoliter-sized droplets containing bacteria and different drugs can be generated for screening applications. A simple colorimetric viability readout utilizing a conventional photo scanner is developed for fast single-step detection of the inhibitory effect of the compounds on bacterial growth on the whole array. Six hit compounds, including coumarins and structurally simplified estrogen analogs are identified in the primary screening and validated with minimum inhibition concentration assay for their antibacterial effect. This study demonstrates that the DMA-based high-throughput screening system enables the identification of potential antibiotics from novel synthetic compound libraries, offering opportunities for development of new treatments against multidrug-resistant bacteria.


Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Bacteria
...