Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NMR Biomed ; 36(2): e4842, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36259728

RESUMEN

The United States is experiencing a dramatic increase in maternal opioid misuse and, consequently, the number of individuals exposed to opioids in utero. Prenatal opioid exposure has both acute and long-lasting effects on health and wellbeing. Effects on the brain, often identified at school age, manifest as cognitive impairment, attention deficit, and reduced scholastic achievement. The neurobiological basis for these effects is poorly understood. Here, we examine how in utero exposure to heroin affects brain development into early adolescence in a mouse model. Pregnant C57BL/6J mice received escalating doses of heroin twice daily on gestational days 4-18. The brains of offspring were assessed on postnatal day 28 using 9.4 T diffusion MRI of postmortem specimens at 36 µm resolution. Whole-brain volumes and the volumes of 166 bilateral regions were compared between heroin-exposed and control offspring. We identified a reduction in whole-brain volume in heroin-exposed offspring and heroin-associated volume changes in 29 regions after standardizing for whole-brain volume. Regions with bilaterally reduced standardized volumes in heroin-exposed offspring relative to controls include the ectorhinal and insular cortices. Regions with bilaterally increased standardized volumes in heroin-exposed offspring relative to controls include the periaqueductal gray, septal region, striatum, and hypothalamus. Leveraging microscopic resolution diffusion tensor imaging and precise regional parcellation, we generated whole-brain structural MRI diffusion connectomes. Using a dimension reduction approach with multivariate analysis of variance to assess group differences in the connectome, we found that in utero heroin exposure altered structure-based connectivity of the left septal region and the region that acts as a hub for limbic regulatory actions. Consistent with clinical evidence, our findings suggest that prenatal opioid exposure may have effects on brain morphology, connectivity, and, consequently, function that persist into adolescence. This work expands our understanding of the risks associated with opioid misuse during pregnancy and identifies biomarkers that may facilitate diagnosis and treatment.


Asunto(s)
Trastornos Relacionados con Opioides , Efectos Tardíos de la Exposición Prenatal , Humanos , Embarazo , Femenino , Animales , Ratones , Heroína/efectos adversos , Imagen de Difusión Tensora/métodos , Analgésicos Opioides/farmacología , Ratones Endogámicos C57BL , Encéfalo
2.
Sci Rep ; 12(1): 21422, 2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36503898

RESUMEN

Genetically tractable animal models provide needed strategies to resolve the biological basis of drug addiction. Intravenous self-administration (IVSA) is the gold standard for modeling psychostimulant and opioid addiction in animals, but technical limitations have precluded the widespread use of IVSA in mice. Here, we describe IVSA paradigms for mice that capture the multi-stage nature of the disorder and permit predictive modeling. In these paradigms, C57BL/6J mice with long-standing indwelling jugular catheters engaged in cocaine- or remifentanil-associated lever responding that was fixed ratio-dependent, dose-dependent, extinguished by withholding the drug, and reinstated by the presentation of drug-paired cues. The application of multivariate analysis suggested that drug taking in both paradigms was a function of two latent variables we termed incentive motivation and discriminative control. Machine learning revealed that vulnerability to drug seeking and relapse were predicted by a mouse's a priori response to novelty, sensitivity to drug-induced locomotion, and drug-taking behavior. The application of these behavioral and statistical-analysis approaches to genetically-engineered mice will facilitate the identification of neural circuits driving addiction susceptibility and relapse and focused therapeutic development.


Asunto(s)
Comportamiento de Búsqueda de Drogas , Ratones , Animales , Ratones Endogámicos C57BL , Administración Intravenosa , Autoadministración , Modelos Animales
3.
Front Immunol ; 10: 2675, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31911786

RESUMEN

Postoperative delirium is a frequent and debilitating complication, especially amongst high risk procedures such as orthopedic surgery, and its pathogenesis remains unclear. Inattention is often reported in the clinical diagnosis of delirium, however limited attempts have been made to study this cognitive domain in preclinical models. Here we implemented the 5-choice serial reaction time task (5-CSRTT) to evaluate attention in a clinically relevant mouse model following orthopedic surgery. The 5-CSRTT showed a time-dependent impairment in the number of responses made by the mice acutely after orthopedic surgery, with maximum impairment at 24 h and returning to pre-surgical performance by day 5. Similarly, the latency to the response was also delayed during this time period but returned to pre-surgical levels within several days. While correct responses decreased following surgery, the accuracy of the response (e.g., selection of the correct nose-poke) remained relatively unchanged. In a separate cohort we evaluated neuroinflammation and blood-brain barrier (BBB) dysfunction using clarified brain tissue with light-sheet microscopy. CLARITY revealed significant changes in microglial morphology and impaired astrocytic-tight junction interactions using high-resolution 3D reconstructions of the neurovascular unit. Deposition of IgG, fibrinogen, and autophagy markers (TFEB and LAMP1) were also altered in the hippocampus 24 h after surgery. Together, these results provide translational evidence for the role of peripheral surgery contributing to delirium-like behavior and disrupted neuroimmunity in adult mice.


Asunto(s)
Disfunción Cognitiva/etiología , Delirio/etiología , Procedimientos Ortopédicos/efectos adversos , Fracturas de la Tibia/cirugía , Animales , Atención , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Disfunción Cognitiva/inmunología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Delirio/inmunología , Delirio/metabolismo , Delirio/patología , Modelos Animales de Enfermedad , Encefalitis/inmunología , Encefalitis/metabolismo , Encefalitis/patología , Fibrinógeno/metabolismo , Hipocampo/inmunología , Hipocampo/metabolismo , Hipocampo/patología , Inmunoglobulina G/inmunología , Proteínas de Membrana de los Lisosomas/metabolismo , Masculino , Ratones Endogámicos C57BL , Tiempo de Reacción
4.
JCI Insight ; 2(20)2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29046483

RESUMEN

Genetic defects in the synaptic scaffolding protein gene, SHANK2, are linked to a variety of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia, intellectual disability, and bipolar disorder, but the molecular mechanisms underlying the pleotropic effects of SHANK2 mutations are poorly understood. We generated and characterized a line of Shank2 mutant mice by deleting exon 24 (Δe24). Shank2Δe24-/- mice engage in significantly increased locomotor activity, display abnormal reward-seeking behavior, are anhedonic, have perturbations in circadian rhythms, and show deficits in social and cognitive behaviors. While these phenotypes recapitulate the pleotropic behaviors associated with human SHANK2-related disorders, major behavioral features in these mice are reminiscent of bipolar disorder. For instance, their hyperactivity was augmented with amphetamine but was normalized with the mood stabilizers lithium and valproate. Shank2 deficiency limited to the forebrain recapitulated the bipolar mania phenotype. The composition and functions of NMDA and AMPA receptors were altered at Shank2-deficient synapses, hinting toward the mechanism underlying these behavioral abnormalities. Human genetic findings support construct validity, and the behavioral features in Shank2 Δe24 mice support face and predictive validities of this model for bipolar mania. Further genetic studies to understand the contribution of SHANK2 deficiencies in bipolar disorder are warranted.


Asunto(s)
Trastorno Bipolar/genética , Actividad Motora/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Anfetamina/farmacología , Anhedonia , Animales , Antimaníacos/uso terapéutico , Conducta Animal , Estimulantes del Sistema Nervioso Central/farmacología , Trastornos Cronobiológicos/tratamiento farmacológico , Trastornos Cronobiológicos/genética , Disfunción Cognitiva/genética , Femenino , Hipocampo/metabolismo , Hipocampo/ultraestructura , Compuestos de Litio/uso terapéutico , Masculino , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , N-Metilaspartato/metabolismo , Fenotipo , Prosencéfalo/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Trastorno de la Conducta Social/genética , Sinapsis/metabolismo
5.
J Phys Chem B ; 118(49): 14110-4, 2014 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-25157748

RESUMEN

Melanosomes have the capacity to bind significant concentrations of calcium, suggesting there are surface binding sites that enable cations to access the interior of fully pigmented melanosomes. The surface of melanosomes is known to contain significant concentrations of carboxylate groups which likely are the initial biding sites for calcium, but their arrangement on the surface of the melanosome is not known. In various calcium proteins, a bidentate coordination by two carboxylate groups is the most common structure. In this study, we determine the distance between neighboring surface carboxylic acid groups by examining the binding of a series of diamines (+)H3N(CH2)mNH3(+) (m = 1-5) to melanosomes isolated from the ink sacs of Sepia officinalis and bovine choroid tissue. Of these amines, ethylenediamine (m = 2) shows optimal bidentate binding, revealing a narrow distribution of distances between neighboring carboxylic acid groups, ∼480 pm, similar to that found in proteins for calcium binding motifs involving two carboxylate groups.


Asunto(s)
Calcio/metabolismo , Ácidos Carboxílicos/metabolismo , Melanosomas/metabolismo , Animales , Sitios de Unión , Ácidos Carboxílicos/análisis , Bovinos , Diaminas/análisis , Diaminas/metabolismo , Melanosomas/química , Melanosomas/ultraestructura , Sepia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...