Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell Rep ; 39(1): 110602, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385755

RESUMEN

Up to 15% of human cancers maintain their telomeres through a telomerase-independent mechanism, termed "alternative lengthening of telomeres" (ALT) that relies on homologous recombination between telomeric sequences. Emerging evidence suggests that the recombinogenic nature of ALT telomeres results from the formation of RNA:DNA hybrids (R-loops) between telomeric DNA and the long-noncoding telomeric repeat-containing RNA (TERRA). Here, we show that the mismatch repair protein MutSß, a heterodimer of MSH2 and MSH3 subunits, is enriched at telomeres in ALT cancer cells, where it prevents the accumulation of telomeric G-quadruplex (G4) structures and R-loops. Cells depleted of MSH3 display increased incidence of R-loop-dependent telomere fragility and accumulation of telomeric C-circles. We also demonstrate that purified MutSß recognizes and destabilizes G4 structures in vitro. These data suggest that MutSß destabilizes G4 structures in ALT telomeres to regulate TERRA R-loops, which is a prerequisite for maintenance of telomere integrity during ALT.


Asunto(s)
Neoplasias , ARN Largo no Codificante , ADN/metabolismo , Humanos , Neoplasias/genética , Estructuras R-Loop , ARN Largo no Codificante/metabolismo , Telómero/metabolismo , Homeostasis del Telómero
2.
Cells ; 11(4)2022 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-35203293

RESUMEN

Human CtIP is best known for its role in DNA end resection to initiate DNA double-strand break repair by homologous recombination. Recently, CtIP has also been shown to protect reversed replication forks from nucleolytic degradation upon DNA replication stress. However, still little is known about the DNA damage response (DDR) networks that preserve genome integrity and sustain cell survival in the context of CtIP insufficiency. Here, to reveal such potential buffering relationships, we screened a DDR siRNA library in CtIP-deficient cells to identify candidate genes that induce synthetic sickness/lethality (SSL). Our analyses unveil a negative genetic interaction between CtIP and BARD1, the heterodimeric binding partner of BRCA1. We found that simultaneous disruption of CtIP and BARD1 triggers enhanced apoptosis due to persistent replication stress-induced DNA lesions giving rise to chromosomal abnormalities. Moreover, we observed that the genetic interaction between CtIP and BARD1 occurs independently of the BRCA1-BARD1 complex formation and might be, therefore, therapeutical relevant for the treatment of BRCA-defective tumors.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Endodesoxirribonucleasas , Proteínas Supresoras de Tumor , Ubiquitina-Proteína Ligasas , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Genes Supresores de Tumor , Recombinación Homóloga , Humanos , Interferencia de ARN , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Cell Rep ; 36(9): 109649, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34469738

RESUMEN

CAG repeat expansion in the HTT gene drives Huntington's disease (HD) pathogenesis and is modulated by DNA damage repair pathways. In this context, the interaction between FAN1, a DNA-structure-specific nuclease, and MLH1, member of the DNA mismatch repair pathway (MMR), is not defined. Here, we identify a highly conserved SPYF motif at the N terminus of FAN1 that binds to MLH1. Our data support a model where FAN1 has two distinct functions to stabilize CAG repeats. On one hand, it binds MLH1 to restrict its recruitment by MSH3, thus inhibiting the assembly of a functional MMR complex that would otherwise promote CAG repeat expansion. On the other hand, it promotes accurate repair via its nuclease activity. These data highlight a potential avenue for HD therapeutics in attenuating somatic expansion.


Asunto(s)
Encéfalo/enzimología , Daño del ADN , Reparación de la Incompatibilidad de ADN , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteína Huntingtina/genética , Enfermedad de Huntington/enzimología , Enzimas Multifuncionales/metabolismo , Homólogo 1 de la Proteína MutL/metabolismo , Expansión de Repetición de Trinucleótido , Animales , Unión Competitiva , Encéfalo/patología , Línea Celular Tumoral , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Células HEK293 , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Ratones , Enzimas Multifuncionales/genética , Homólogo 1 de la Proteína MutL/genética , Proteína 3 Homóloga de MutS/genética , Proteína 3 Homóloga de MutS/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
4.
Sci Adv ; 7(31)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34330701

RESUMEN

FAN1, a DNA structure-specific nuclease, interacts with MLH1, but the repair pathways in which this complex acts are unknown. FAN1 processes DNA interstrand crosslinks (ICLs) and FAN1 variants are modifiers of the neurodegenerative Huntington's disease (HD), presumably by regulating HD-causing CAG repeat expansions. Here, we identify specific amino acid residues in two adjacent FAN1 motifs that are critical for MLH1 binding. Disruption of the FAN1-MLH1 interaction confers cellular hypersensitivity to ICL damage and defective repair of CAG/CTG slip-outs, intermediates of repeat expansion mutations. FAN1-S126 phosphorylation, which hinders FAN1-MLH1 association, is cell cycle-regulated by cyclin-dependent kinase activity and attenuated upon ICL induction. Our data highlight the FAN1-MLH1 complex as a phosphorylation-regulated determinant of ICL response and repeat stability, opening novel paths to modify cancer and neurodegeneration.


Asunto(s)
Endodesoxirribonucleasas , Exodesoxirribonucleasas , ADN , Daño del ADN , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Enzimas Multifuncionales/genética
5.
J Huntingtons Dis ; 10(1): 95-122, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33579867

RESUMEN

FAN1 encodes a DNA repair nuclease. Genetic deficiencies, copy number variants, and single nucleotide variants of FAN1 have been linked to karyomegalic interstitial nephritis, 15q13.3 microdeletion/microduplication syndrome (autism, schizophrenia, and epilepsy), cancer, and most recently repeat expansion diseases. For seven CAG repeat expansion diseases (Huntington's disease (HD) and certain spinocerebellar ataxias), modification of age of onset is linked to variants of specific DNA repair proteins. FAN1 variants are the strongest modifiers. Non-coding disease-delaying FAN1 variants and coding disease-hastening variants (p.R507H and p.R377W) are known, where the former may lead to increased FAN1 levels and the latter have unknown effects upon FAN1 functions. Current thoughts are that ongoing repeat expansions in disease-vulnerable tissues, as individuals age, promote disease onset. Fan1 is required to suppress against high levels of ongoing somatic CAG and CGG repeat expansions in tissues of HD and FMR1 transgenic mice respectively, in addition to participating in DNA interstrand crosslink repair. FAN1 is also a modifier of autism, schizophrenia, and epilepsy. Coupled with the association of these diseases with repeat expansions, this suggests a common mechanism, by which FAN1 modifies repeat diseases. Yet how any of the FAN1 variants modify disease is unknown. Here, we review FAN1 variants, associated clinical effects, protein structure, and the enzyme's attributed functional roles. We highlight how variants may alter its activities in DNA damage response and/or repeat instability. A thorough awareness of the FAN1 gene and FAN1 protein functions will reveal if and how it may be targeted for clinical benefit.


Asunto(s)
Reparación del ADN/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Genes Modificadores/genética , Inestabilidad Genómica/genética , Enfermedad de Huntington/genética , Enzimas Multifuncionales/genética , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Humanos
6.
Adv Sci (Weinh) ; 7(22): 2001970, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33240760

RESUMEN

A versatile and Lipinski-compliant DNA-encoded library (DEL), comprising 366 600 glutamic acid derivatives coupled to oligonucleotides serving as amplifiable identification barcodes is designed, constructed, and characterized. The GB-DEL library, constructed in single-stranded DNA format, allows de novo identification of specific binders against several pharmaceutically relevant proteins. Moreover, hybridization of the single-stranded DEL with a set of known protein ligands of low to medium affinity coupled to a complementary DNA strand results in self-assembled selectable chemical structures, leading to the identification of affinity-matured compounds.

7.
Mol Cell ; 77(3): 528-541.e8, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31759821

RESUMEN

Formation of co-transcriptional R-loops underlies replication fork stalling upon head-on transcription-replication encounters. Here, we demonstrate that RAD51-dependent replication fork reversal induced by R-loops is followed by the restart of semiconservative DNA replication mediated by RECQ1 and RECQ5 helicases, MUS81/EME1 endonuclease, RAD52 strand-annealing factor, the DNA ligase IV (LIG4)/XRCC4 complex, and the non-catalytic subunit of DNA polymerase δ, POLD3. RECQ5 disrupts RAD51 filaments assembled on stalled forks after RECQ1-mediated reverse branch migration, preventing a new round of fork reversal and facilitating fork cleavage by MUS81/EME1. MUS81-dependent DNA breaks accumulate in cells lacking RAD52 or LIG4 upon induction of R-loop formation, suggesting that RAD52 acts in concert with LIG4/XRCC4 to catalyze fork religation, thereby mediating replication restart. The resumption of DNA synthesis after R-loop-associated fork stalling also requires active transcription, the restoration of which depends on MUS81, RAD52, LIG4, and the transcription elongation factor ELL. These findings provide mechanistic insights into transcription-replication conflict resolution.


Asunto(s)
Replicación del ADN/fisiología , Estructuras R-Loop/genética , Recombinasa Rad51/metabolismo , Línea Celular Tumoral , ADN Ligasas/metabolismo , ADN Polimerasa III/metabolismo , Replicación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Células HeLa , Humanos , Estructuras R-Loop/fisiología , Recombinasa Rad51/genética , Recombinasa Rad51/fisiología , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , RecQ Helicasas/metabolismo , RecQ Helicasas/fisiología , Transcripción Genética/genética
8.
Mol Cell ; 73(6): 1089-1091, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901561

RESUMEN

In this issue of Molecular Cell, Zong et al. (2019) reveal RNF168-driven chromatin ubiquitylation as a key back-up mechanism to sustain homologous recombination (HR) independently of BRCA1. These findings provide new clues to carcinogenesis and cancer therapy in BRCA1 heterozygous mutation carriers.


Asunto(s)
Cromatina , Haploinsuficiencia , Proteína BRCA1/genética , Línea Celular Tumoral , Recombinación Homóloga , Ubiquitinación
9.
Mol Cell ; 72(3): 568-582.e6, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30344097

RESUMEN

Protecting stalled DNA replication forks from degradation by promiscuous nucleases is essential to prevent genomic instability, a major driving force of tumorigenesis. Several proteins commonly associated with the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) have been implicated in the stabilization of stalled forks. Human CtIP, in conjunction with the MRE11 nuclease complex, plays an important role in HR by promoting DSB resection. Here, we report an unanticipated function for CtIP in protecting reversed forks from degradation. Unlike BRCA proteins, which defend nascent DNA strands from nucleolytic attack by MRE11, we find that CtIP protects perturbed forks from erroneous over-resection by DNA2. Finally, we uncover functionally synergistic effects between CtIP and BRCA1 in mitigating replication-stress-induced genomic instability. Collectively, our findings reveal a DSB-resection- and MRE11-independent role for CtIP in preserving fork integrity that contributes to the survival of BRCA1-deficient cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Replicación del ADN/fisiología , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Proteína BRCA1 , Proteína BRCA2 , Línea Celular , Roturas del ADN de Doble Cadena , ADN Helicasas/fisiología , Reparación del ADN , Proteínas de Unión al ADN , Desoxirribonucleasas , Endodesoxirribonucleasas , Inestabilidad Genómica/fisiología , Recombinación Homóloga/genética , Humanos , Proteína Homóloga de MRE11/metabolismo , Unión Proteica
10.
Nat Commun ; 8(1): 2285, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29263317

RESUMEN

The financial support for this Article was not fully acknowledged. The Acknowledgements should have included the following: This study was in part supported by the Swiss National Foundation Grant No.: 31003A-156023 to Alessandro Sartori.

11.
Nat Commun ; 8(1): 1073, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29051491

RESUMEN

Interstrand cross-link (ICL) hypersensitivity is a characteristic trait of Fanconi anemia (FA). Although FANCD2-associated nuclease 1 (FAN1) contributes to ICL repair, FAN1 mutations predispose to karyomegalic interstitial nephritis (KIN) and cancer rather than to FA. Thus, the biological role of FAN1 remains unclear. Because fork stalling in FAN1-deficient cells causes chromosomal instability, we reasoned that the key function of FAN1 might lie in the processing of halted replication forks. Here, we show that FAN1 contains a previously-uncharacterized PCNA interacting peptide (PIP) motif that, together with its ubiquitin-binding zinc finger (UBZ) domain, helps recruit FAN1 to ubiquitylated PCNA accumulated at stalled forks. This prevents replication fork collapse and controls their progression. Furthermore, we show that FAN1 preserves replication fork integrity by a mechanism that is distinct from BRCA2-dependent homologous recombination. Thus, targeting FAN1 activities and its interaction with ubiquitylated PCNA may offer therapeutic opportunities for treatment of BRCA-deficient tumors.


Asunto(s)
Proteína BRCA2/metabolismo , Exodesoxirribonucleasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína BRCA2/genética , Línea Celular Tumoral , Reparación del ADN/genética , Reparación del ADN/fisiología , Replicación del ADN/genética , Replicación del ADN/fisiología , Endodesoxirribonucleasas , Exodesoxirribonucleasas/genética , Humanos , Enzimas Multifuncionales , Antígeno Nuclear de Célula en Proliferación/genética , Unión Proteica/genética , Unión Proteica/fisiología , Ubiquitinación/genética , Ubiquitinación/fisiología
12.
Nat Commun ; 7: 12628, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27561354

RESUMEN

Human CtIP is a decisive factor in DNA double-strand break repair pathway choice by enabling DNA-end resection, the first step that differentiates homologous recombination (HR) from non-homologous end-joining (NHEJ). To coordinate appropriate and timely execution of DNA-end resection, CtIP function is tightly controlled by multiple protein-protein interactions and post-translational modifications. Here, we identify the Cullin3 E3 ligase substrate adaptor Kelch-like protein 15 (KLHL15) as a new interaction partner of CtIP and show that KLHL15 promotes CtIP protein turnover via the ubiquitin-proteasome pathway. A tripeptide motif (FRY) conserved across vertebrate CtIP proteins is essential for KLHL15-binding; its mutation blocks KLHL15-dependent CtIP ubiquitination and degradation. Consequently, DNA-end resection is strongly attenuated in cells overexpressing KLHL15 but amplified in cells either expressing a CtIP-FRY mutant or lacking KLHL15, thus impacting the balance between HR and NHEJ. Collectively, our findings underline the key importance and high complexity of CtIP modulation for genome integrity.


Asunto(s)
Proteínas Portadoras/metabolismo , Reparación del ADN por Unión de Extremidades , Recombinación Homóloga/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitinación/genética , Proteínas Portadoras/genética , Línea Celular , Proteínas Cullin/metabolismo , Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas , Humanos , Mutación , Proteínas Nucleares/genética , Dominios y Motivos de Interacción de Proteínas/genética , Proteolisis
13.
14.
Trends Biochem Sci ; 40(5): 275-85, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25845889

RESUMEN

Telomeres are nucleoprotein structures capping the natural termini of eukaryotic linear chromosomes. Telomeres possess an inherent ability to circumvent the activation of a full-blown DNA damage response (DDR), and hence fusion reactions, by limiting inappropriate double-strand break (DSB) repair and processing activities at eukaryotic chromosome ends. A telomere-specific protein complex, termed shelterin, has a crucial function in safeguarding and securing telomere integrity. Within this complex, TRF2 has emerged as the key player, dictating different states of telomere protection during the replicative lifespan of a cell. How TRF2 prevents activation of DSB repair activities at functional telomeres has now been extensively investigated. In this review we aim at exploring the complex and multi-faceted mechanisms underlying the TRF2-mediated protection of eukaryotic chromosome ends.


Asunto(s)
Cromosomas/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Animales , Cromatina/metabolismo , Daño del ADN/genética , Daño del ADN/fisiología , Reparación del ADN/genética , Reparación del ADN/fisiología , Humanos , Telómero/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética
15.
Nat Commun ; 5: 5379, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25359189

RESUMEN

Telomere deprotection occurs during tumorigenesis and aging upon telomere shortening or loss of the telomeric shelterin component TRF2. Deprotected telomeres undergo changes in chromatin structure and elicit a DNA damage response (DDR) that leads to cellular senescence. The telomeric long noncoding RNA TERRA has been implicated in modulating the structure and processing of deprotected telomeres. Here, we characterize the human TERRA transcriptome at normal and TRF2-depleted telomeres and demonstrate that TERRA upregulation is occurring upon depletion of TRF2 at all transcribed telomeres. TRF2 represses TERRA transcription through its homodimerization domain, which was previously shown to induce chromatin compaction and to prevent the early steps of DDR activation. We show that TERRA associates with SUV39H1 H3K9 histone methyltransferase, which promotes accumulation of H3K9me3 at damaged telomeres and end-to-end fusions. Altogether our data elucidate the TERRA landscape and defines critical roles for this RNA in the telomeric DNA damage response.


Asunto(s)
ARN Largo no Codificante/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Transcriptoma , Daño del ADN , Perfilación de la Expresión Génica , Células HeLa , Histona Acetiltransferasas/metabolismo , Humanos , Lisina Acetiltransferasa 5 , Metiltransferasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Represoras/metabolismo , Regulación hacia Arriba
16.
Cell Rep ; 6(4): 765-76, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24529708

RESUMEN

Telomeres protect chromosome ends from being recognized as sites of DNA damage. Upon telomere shortening or telomere uncapping induced by loss of telomeric repeat-binding factor 2 (TRF2), telomeres elicit a DNA-damage response leading to cellular senescence. Here, we show that following TRF2 depletion, the levels of the long noncoding RNA TERRA increase and LSD1, which binds TERRA, is recruited to telomeres. At uncapped telomeres, LSD1 associates with MRE11, one of the nucleases implicated in the processing of 3' telomeric G overhangs, and we show that LSD1 is required for efficient removal of these structures. The LSD1-MRE11 interaction is reinforced in vivo following TERRA upregulation in TRF2-deficient cells and in vitro by TERRA-mimicking RNA oligonucleotides. Furthermore, LSD1 enhances the nuclease activity of MRE11 in vitro. Our data indicate that recruitment of LSD1 to deprotected telomeres requires MRE11 and is promoted by TERRA. LSD1 stimulates MRE11 catalytic activity and nucleolytic processing of uncapped telomeres.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Histona Demetilasas/metabolismo , ARN Largo no Codificante/metabolismo , Acortamiento del Telómero , Telómero/metabolismo , Proteínas de Unión al ADN/genética , Células HeLa , Histona Demetilasas/genética , Humanos , Proteína Homóloga de MRE11 , Unión Proteica , ARN Largo no Codificante/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Regulación hacia Arriba
17.
J Natl Cancer Inst ; 103(16): 1236-51, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21799180

RESUMEN

BACKGROUND: Although the prognostic value of the ATP-binding cassette, subfamily C (ABCC) transporters in childhood neuroblastoma is usually attributed to their role in cytotoxic drug efflux, certain observations have suggested that these multidrug transporters might contribute to the malignant phenotype independent of cytotoxic drug efflux. METHODS: A v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (MYCN)-driven transgenic mouse neuroblastoma model was crossed with an Abcc1-deficient mouse strain (658 hMYCN(1/-), 205 hMYCN(+/1) mice) or, alternatively, treated with the ABCC1 inhibitor, Reversan (n = 20). ABCC genes were suppressed using short interfering RNA or overexpressed by stable transfection in neuroblastoma cell lines BE(2)-C, SH-EP, and SH-SY5Y, which were then assessed for wound closure ability, clonogenic capacity, morphological differentiation, and cell growth. Real-time quantitative polymerase chain reaction was used to examine the clinical significance of ABCC family gene expression in a large prospectively accrued cohort of patients (n = 209) with primary neuroblastomas. Kaplan-Meier survival analysis and Cox regression were used to test for associations with event-free and overall survival. Except where noted, all statistical tests were two-sided. RESULTS: Inhibition of ABCC1 statistically significantly inhibited neuroblastoma development in hMYCN transgenic mice (mean age for palpable tumor: treated mice, 47.2 days; control mice, 41.9 days; hazard ratio [HR] = 9.3, 95% confidence interval [CI] = 2.65 to 32; P < .001). Suppression of ABCC1 in vitro inhibited wound closure (P < .001) and clonogenicity (P = .006); suppression of ABCC4 enhanced morphological differentiation (P < .001) and inhibited cell growth (P < .001). Analysis of 209 neuroblastoma patient tumors revealed that, in contrast with ABCC1 and ABCC4, low rather than high ABCC3 expression was associated with reduced event-free survival (HR of recurrence or death = 2.4, 95% CI = 1.4 to 4.2; P = .001), with 23 of 53 patients with low ABCC3 expression experiencing recurrence or death compared with 31 of 155 patients with high ABCC3. Moreover, overexpression of ABCC3 in vitro inhibited neuroblastoma cell migration (P < .001) and clonogenicity (P = .03). The combined expression of ABCC1, ABCC3, and ABCC4 was associated with patients having an adverse event, such that of the 12 patients with the "poor prognosis" expression pattern, 10 experienced recurrence or death (HR of recurrence or death = 12.3, 95% CI = 6 to 27; P < .001). CONCLUSION: ABCC transporters can affect neuroblastoma biology independently of their role in chemotherapeutic drug efflux, enhancing their potential as targets for therapeutic intervention.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología , Adolescente , Animales , Western Blotting , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular , Niño , Preescolar , Modelos Animales de Enfermedad , Supervivencia sin Enfermedad , Regulación hacia Abajo , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Humanos , Lactante , Estimación de Kaplan-Meier , Masculino , Ratones , Ratones Transgénicos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteína Proto-Oncogénica N-Myc , Proteínas Nucleares/metabolismo , Oportunidad Relativa , Proteínas Oncogénicas/metabolismo , Reacción en Cadena de la Polimerasa , Valor Predictivo de las Pruebas , Pronóstico , Modelos de Riesgos Proporcionales , Estudios Prospectivos , ARN Interferente Pequeño/metabolismo , Recurrencia , Factores de Tiempo , Transfección , Regulación hacia Arriba , Adulto Joven
18.
Mol Cancer Res ; 9(8): 1054-66, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21693596

RESUMEN

Resistance to chemotherapeutic agents remains one of the major impediments to a successful treatment of chronic myeloid leukemia (CML). Misregulation of the activity of a specific group of ATP-binding cassette transporters (ABC) is responsible for reducing the intracellular concentration of drugs in leukemic cells. Moreover, a consistent body of evidence also suggests that ABC transporters play a role in cancer progression beyond the efflux of cytotoxic drugs. Despite a large number of studies that investigated the function of the ABC transporters, little is known about the transcriptional regulation of the ABC genes. Here, we present data showing that the oncoprotein c-MYC is a direct transcriptional regulator of a large set of ABC transporters in CML. Furthermore, molecular analysis carried out in CD34+ hematopoietic cell precursors of 21 CML patients reveals that the overexpression of ABC transporters driven by c-MYC is a peculiar characteristic of the CD34+ population in CML and was not found either in the population of mononuclear cells from which they had been purified nor in CD34+ cells isolated from healthy donors. Finally, we describe how the methylation state of CpG islands may regulate the access of c-MYC to ABCG2 gene promoter, a well-studied gene associated with multidrug resistance in CML, hence, affecting its expression. Taken together, our findings support a model in which c-MYC-driven transcriptional events, combined with epigenetic mechanisms, direct and regulate the expression of ABC genes with possible implications in tumor malignancy and drug efflux in CML.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Células Madre Hematopoyéticas/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/metabolismo , Antígenos CD34/metabolismo , Proliferación Celular , Células Cultivadas , Islas de CpG/genética , Citotoxinas , Metilación de ADN/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Regiones Promotoras Genéticas , Transcripción Genética
19.
Cancer Res ; 71(2): 404-12, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21123453

RESUMEN

Neuroblastoma is the most common extracranial solid tumor of childhood. One important factor that predicts a favorable prognosis is the robust expression of the TRKA and p75NTR neurotrophin receptor genes. Interestingly, TRKA and p75NTR expression is often attenuated in aggressive MYCN-amplified tumors, suggesting a causal link between elevated MYCN activity and the transcriptional repression of TRKA and p75NTR, but the precise mechanisms involved are unclear. Here, we show that MYCN acts directly to repress TRKA and p75NTR gene transcription. Specifically, we found that MYCN levels were critical for repression and that MYCN targeted proximal/core promoter regions by forming a repression complex with transcription factors SP1 and MIZ1. When bound to the TRKA and p75NTR promoters, MYCN recruited the histone deacetylase HDAC1 to induce a repressed chromatin state. Forced re-expression of endogenous TRKA and p75NTR with exposure to the HDAC inhibitor TSA sensitized neuroblastoma cells to NGF-mediated apoptosis. By directly connecting MYCN to the repression of TRKA and p75NTR, our findings establish a key pathway of clinical pathogenicity and aggressiveness in neuroblastoma.


Asunto(s)
Histona Desacetilasa 1/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factor de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/genética , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Receptor trkA/genética , Receptores de Factor de Crecimiento Nervioso/genética , Factor de Transcripción Sp1/genética , Células HEK293 , Células HeLa , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteína Proto-Oncogénica N-Myc , Proteínas del Tejido Nervioso/biosíntesis , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/metabolismo , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Receptor trkA/biosíntesis , Receptores de Factor de Crecimiento Nervioso/biosíntesis , Factor de Transcripción Sp1/metabolismo , Transcripción Genética , Transfección
20.
Mol Cell Biol ; 30(20): 4808-17, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20713443

RESUMEN

Telomeres are transcribed into telomeric repeat-containing RNA (TERRA), large, heterogeneous, noncoding transcripts which form part of the telomeric heterochromatin. Despite a large number of functions that have been ascribed to TERRA, little is known about its biogenesis. Here, we present the first comprehensive analysis of the molecular structure of TERRA. We identify biochemically distinct TERRA complexes, and we describe TERRA regulation during the cell cycle. Moreover, we demonstrate that TERRA 5' ends contain 7-methylguanosine cap structures and that the poly(A) tail, present on a fraction of TERRA transcripts, contributes to their stability. Poly(A)(-) TERRA, but not poly(A)(+) TERRA, is associated with chromatin, possibly reflecting distinct biological roles of TERRA ribonucleoprotein complexes. In support of this idea, poly(A)(-) and poly(A)(+) TERRA molecules end with distinct sequence registers. We also determine that the bulk of 3'-terminal UUAGGG repeats have an average length of 200 bases, indicating that the length heterogeneity of TERRA likely stems from its subtelomeric regions. Finally, we find that TERRA is regulated during the cell cycle, being lowest in late S phase and peaking in early G(1). Our analyses offer the basis for investigating multiple regulatory pathways that affect TERRA synthesis, processing, turnover, and function.


Asunto(s)
ARN/biosíntesis , ARN/genética , Telómero/genética , Telómero/metabolismo , Secuencia de Bases , Ciclo Celular , Línea Celular , Células HeLa , Humanos , Caperuzas de ARN/metabolismo , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Mensajero/metabolismo , Fracciones Subcelulares/metabolismo , Secuencias Repetidas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...