RESUMEN
Political, economic, and climatic upheaval can result in mass human migration across extreme terrain in search of more humane living conditions, exposing migrants to environments that challenge human tolerance. An empirical understanding of the biological stresses associated with these migrations will play a key role in the development of social, political, and medical strategies for alleviating adverse effects and risk of death. We model physiological stress associated with undocumented migration across a commonly traversed section of the southern border of the United States and find that locations of migrant death are disproportionately clustered within regions of greatest predicted physiological stress (evaporative water loss). Minimum values of estimated evaporative water loss were sufficient to cause severe dehydration and associated proximate causes of mortality. Integration of future climate predictions into models increased predicted physiological costs of migration by up to 34.1% over the next 30 years.
Asunto(s)
Clima Desértico , Migración Humana , Mortalidad , Estrés Fisiológico , Inmigrantes Indocumentados , Arizona , Niño , Cambio Climático , Deshidratación/epidemiología , Emigración e Inmigración , Femenino , Respuesta al Choque Térmico , Humanos , Masculino , México , Modelos Teóricos , Embarazo , Factores de Riesgo , Estaciones del AñoRESUMEN
In lizards, one of the most important behavioral mechanisms to cope with spatial and temporal variations in thermal resources observed is activity time. The longer a lizard can maintain activity, the more time it has to forage and reach larger adult body size. We studied the behavioral adjustments to different climatic regimens on daily and seasonal scales in three natural populations of the lizard Microlophus atacamensis along a latitudinal temperature and rainfall gradient. We also used Niche Mapper to determinate the amount of thermally suitable time for activity for this species. Abundance and daily activity patterns varied greatly over the year for the three populations. In summer and spring, the daily activity times were greater, and were reduced in fall and winter seasons. In summer, when stressful heat loads should prohibit activity over a midday gap, lizards did not show bimodal patterns of activity. Instead, they move to the cooler intertidal habitat. Abundance and thermal quality in the southernmost coolest site was lower, and the potential annual activity time decreases with latitude. Contrary to expectations, lizards from this locality showed the largest body sizes possibly due to diet and/or time to sexual maturation. Our results indicate that the intertidal habitat is a key factor that influences daily and seasonal activity of M. atacamensis lizards. While this habitat is not climatically optimal for lizards, it allows them to behaviorally extend their activity window and gain access to food in the intertidal areas.
Asunto(s)
Conducta Apetitiva/fisiología , Regulación de la Temperatura Corporal/fisiología , Clima , Conducta Alimentaria/fisiología , Lagartos/fisiología , Estaciones del Año , Análisis de Varianza , Animales , Tamaño Corporal , Chile , Factores de TiempoRESUMEN
We investigated the developmental toxicity in mice of a common commercial formulation of herbicide containing a mixture of 2,4-dichlorophenoxyacetic acid (2,4-D), mecoprop, dicamba, and inactive ingredients. Pregnant mice were exposed to one of four different doses of the herbicide mixture diluted in their drinking water, either during preimplantation and organogenesis or only during organogenesis. Litter size, birth weight, and crown-rump length were determined at birth, and pups were allowed to lactate and grow without additional herbicide exposure so that they could be subjected to additional immune, endocrine, and behavioral studies, the results of which will be reported in a separate article. At weaning, dams were sacrificed, and the number of implantation sites was determined. The data, although apparently influenced by season, showed an inverted or U-shaped dose-response pattern for reduced litter size, with the low end of the dose range producing the greatest decrease in the number of live pups born. The decrease in litter size was associated with a decrease in the number of implantation sites, but only at very low and low environmentally relevant doses. Fetotoxicity, as evidenced by a decrease in weight and crown-rump length of the newborn pups or embryo resorption, was not significantly different in the herbicide-treated litters.