Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 20(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36422006

RESUMEN

Biofilms, responsible for many serious drawbacks in the medical and marine environment, can grow on abiotic and biotic surfaces. Commercial anti-biofilm solutions, based on the use of biocides, are available but their use increases the risk of antibiotic resistance and environmental pollution in marine industries. There is an urgent need to work on the development of ecofriendly solutions, formulated without biocidal agents, that rely on the anti-adhesive physico-chemical properties of their materials. In this context, exopolysaccharides (EPSs) are natural biopolymers with complex properties than may be used as anti-adhesive agents. This study is focused on the effect of the EPS MO245, a hyaluronic acid-like polysaccharide, on the growth, adhesion, biofilm maturation, and dispersion of two pathogenic model strains, Pseudomonas aeruginosa sp. PaO1 and Vibrio harveyi DSM19623. Our results demonstrated that MO245 may limit biofilm formation, with a biofilm inhibition between 20 and 50%, without any biocidal activity. Since EPSs have no significant impact on the bacterial motility and quorum sensing factors, our results indicate that physico-chemical interactions between the bacteria and the surfaces are modified due to the presence of an adsorbed EPS layer acting as a non-adsorbing layer.


Asunto(s)
Ácido Hialurónico , Vibrio , Ácido Hialurónico/farmacología , Biopelículas , Percepción de Quorum , Pseudomonas
2.
Microorganisms ; 10(9)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36144390

RESUMEN

Phthalates are used in a variety of applications-for example, as plasticizers in polyvinylchloride products to improve their flexibility-and can be easily released into the environment. In addition to being major persistent organic environmental pollutants, some phthalates are responsible for the carcinogenicity, teratogenicity, and endocrine disruption that are notably affecting steroidogenesis in mammals. Numerous studies have thus focused on deciphering their effects on mammals and eukaryotic cells. While multicellular organisms such as humans are known to display various microbiota, including all of the microorganisms that may be commensal, symbiotic, or pathogenic, few studies have aimed at investigating the relationships between phthalates and bacteria, notably regarding their effects on opportunistic pathogens and the severity of the associated pathologies. Herein, the effects of phthalates and their substitutes were investigated on the human pathogen, Pseudomonas aeruginosa, in terms of physiology, virulence, susceptibility to antibiotics, and ability to form biofilms. We show in particular that most of these compounds increased biofilm formation, while some of them enhanced the bacterial membrane fluidity and altered the bacterial morphology.

4.
Microorganisms ; 8(9)2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854286

RESUMEN

Pseudoalteromonas bacteria are known as potential bioactive metabolite producers. Because of the need to obtain natural molecules inhibiting the bacterial biofilms, we investigated the biofilm inhibitory activity of the marine bacterium Pseudoalteromonas sp. IIIA004 against the pioneer surface colonizer Roseovarius sp. VA014. The anti-biofilm activity from the culture supernatant of Pseudoalteromonas sp. IIIA004 (SNIIIA004) was characterized in microtiter plates (static conditions/polystyrene surface) and in flow cell chambers (dynamic conditions/glass surface). The Pseudoalteromonas exoproducts exhibited an inhibition of Roseovarius sp. VA014 biofilm formation as well as a strong biofilm dispersion, without affecting the bacterial growth. Microbial adhesion to solvent assays showed that SNIIIA004 did not change the broad hydrophilic and acid character of the Roseovarius strain surface. Bioassay-guided purification using solid-phase extraction and C18 reverse-phase-high-performance liquid chromatography (RP-HPLC) was performed from SNIIIA004 to isolate the proteinaceous active compound against the biofilm formation. This new anti-biofilm low weight molecule (< 3kDa), named P004, presented a wide spectrum of action on various bacterial biofilms, with 71% of sensitive strains including marine bacteria and human pathogens. Pseudoalteromonas sp. IIIA004 is a promising source of natural anti-biofilm compounds that combine several activities.

5.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32769182

RESUMEN

We sought to identify and study the antibiofilm protein secreted by the marine bacterium Pseudoalteromonas sp. strain 3J6. The latter is active against marine and terrestrial bacteria, including Pseudomonas aeruginosa clinical strains forming different biofilm types. Several amino acid sequences were obtained from the partially purified antibiofilm protein, named alterocin. The Pseudoalteromonas sp. 3J6 genome was sequenced, and a candidate alt gene was identified by comparing the genome-encoded proteins to the sequences from purified alterocin. Expressing the alt gene in another nonactive Pseudoalteromonas sp. strain, 3J3, demonstrated that it is responsible for the antibiofilm activity. Alterocin is a 139-residue protein that includes a predicted 20-residue signal sequence, which would be cleaved off upon export by the general secretion system. No sequence homology was found between alterocin and proteins of known functions. The alt gene is not part of an operon and adjacent genes do not seem related to alterocin production, immunity, or regulation, suggesting that these functions are not fulfilled by devoted proteins. During growth in liquid medium, the alt mRNA level peaked during the stationary phase. A single promoter was experimentally identified, and several inverted repeats could be binding sites for regulators. alt genes were found in about 30% of the Pseudoalteromonas genomes and in only a few instances of other marine bacteria of the Hahella and Paraglaciecola genera. Comparative genomics yielded the hypothesis that alt gene losses occurred within the Pseudoalteromonas genus. Overall, alterocin is a novel kind of antibiofilm protein of ecological and biotechnological interest.IMPORTANCE Biofilms are microbial communities that develop on solid surfaces or interfaces and are detrimental in a number of fields, including for example food industry, aquaculture, and medicine. In the latter, antibiotics are insufficient to clear biofilm infections, leading to chronic infections such as in the case of infection by Pseudomonas aeruginosa of the lungs of cystic fibrosis patients. Antibiofilm molecules are thus urgently needed to be used in conjunction with conventional antibiotics, as well as in other fields of application, especially if they are environmentally friendly molecules. Here, we describe alterocin, a novel antibiofilm protein secreted by a marine bacterium belonging to the Pseudoalteromonas genus, and its gene. Alterocin homologs were found in about 30% of Pseudoalteromonas strains, indicating that this new family of antibiofilm proteins likely plays an important albeit nonessential function in the biology of these bacteria. This study opens up the possibility of a variety of applications.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Pseudoalteromonas/genética , Proteínas Bacterianas/biosíntesis
6.
Microbiol Resour Announc ; 9(1)2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31896640

RESUMEN

Biofilms produced by Pseudomonas aeruginosa present a serious threat to cystic fibrosis patients. Here, we report the draft genome sequences of four cystic fibrosis isolates displaying various mucoid and biofilm phenotypes. The estimated average genome size was about 6,255,986 ± 50,202 bp with a mean G+C content of 66.52 ± 0.06%.

7.
Biomed Res Int ; 2018: 8194368, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30426015

RESUMEN

Legionella pneumophila, the causative agent of Legionnaires' disease, is a waterborne bacterium mainly found in man-made water systems in close association with free-living amoebae and multispecies biofilms. Pseudomonas strains, originating from various environments including freshwater systems or isolated from hospitalized patients, were tested for their antagonistic activity towards L. pneumophila. A high amount of tested strains was thus found to be active. This antibacterial activity was correlated to the presence of tensioactive agents in culture supernatants. As Pseudomonas strains were known to produce biosurfactants, these compounds were specifically extracted and purified from active strains and further characterized using reverse-phase HPLC and mass spectrometry methods. Finally, all biosurfactants tested (lipopeptides and rhamnolipids) were found active and this activity was shown to be higher towards Legionella strains compared to various other bacteria. Therefore, described biosurfactants are potent anti-Legionella agents that could be used in the water treatment industry although tests are needed to evaluate how effective they would be under field conditions.


Asunto(s)
Antibacterianos , Glucolípidos , Legionella pneumophila/crecimiento & desarrollo , Lipopéptidos , Pseudomonas , Tensoactivos , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/metabolismo , Antibacterianos/farmacología , Glucolípidos/biosíntesis , Glucolípidos/química , Glucolípidos/aislamiento & purificación , Glucolípidos/farmacología , Humanos , Legionella pneumophila/aislamiento & purificación , Lipopéptidos/biosíntesis , Lipopéptidos/química , Lipopéptidos/aislamiento & purificación , Lipopéptidos/farmacología , Pseudomonas/química , Pseudomonas/metabolismo , Tensoactivos/química , Tensoactivos/aislamiento & purificación , Tensoactivos/metabolismo , Tensoactivos/farmacología , Microbiología del Agua
8.
Sci Rep ; 6: 36448, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27805070

RESUMEN

Legionella pneumophila is a ubiquitous, pathogenic, Gram-negative bacterium responsible for legionellosis. Like many other amoeba-resistant microorganisms, L. pneumophila resists host clearance and multiplies inside the cell. Through its Dot/Icm type IV secretion system, the bacterium injects more than three hundred effectors that modulate host cell physiology in order to promote its own intracellular replication. Here we report that L. pneumophila prevents proliferation of its natural host Acanthamoeba castellanii. Infected amoebae could not undergo DNA replication and no cell division was observed. The Dot/Icm secretion system was necessary for L. pneumophila to prevent the eukaryotic proliferation. The absence of proliferation was associated with altered amoebal morphology and with a decrease of mRNA transcript levels of CDC2b, a putative regulator of the A. castellanii cell cycle. Complementation of CDC28-deficient Saccharomyces cerevisiae by the CDC2b cDNA was sufficient to restore proliferation of CDC28-deficient S. cerevisiae and suggests for the first time that CDC2b from A. castellanii could be functional and a bona fide cyclin-dependent kinase. Hence, our results reveal that L. pneumophila impairs proliferation of A. castellanii and this effect could involve the cell cycle protein CDC2b.


Asunto(s)
Acanthamoeba castellanii/microbiología , Legionella pneumophila/fisiología , Acanthamoeba castellanii/genética , Acanthamoeba castellanii/crecimiento & desarrollo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/deficiencia , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/clasificación , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Tamaño de la Célula , Replicación del ADN , Escherichia coli/fisiología , Humanos , Microscopía por Video , Mutagénesis , Filogenia , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
9.
Microbes Environ ; 31(4): 387-394, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-27629106

RESUMEN

Legionella pneumophila is a pathogenic bacteria found in biofilms in freshwater. Iron is an essential nutrient for L. pneumophila growth. In this study, complex biofilms were developed using river water spiked with L. pneumophila, and the persistence of L. pneumophila in these complex biofilms was evaluated. In order to study the role of iron in the persistence of L. pneumophila, river water was supplied with either iron pyrophosphate or iron chelators (deferoxamine mesylate, DFX for ferric iron and dipyridyl, DIP for ferrous iron) to modulate iron availability. The addition of iron pyrophosphate and DFX did not markedly affect the persistence of L. pneumophila in the biofilms, whereas that of DIP had a beneficial effect. Since DIP specifically chelates ferrous iron, we hypothesized that DIP may protect L. pneumophila from the deleterious effects of ferrous iron. In conclusion, ferrous iron appears to be important for the persistence of L. pneumophila in complex biofilms. However, further studies are needed in order to obtain a better understanding of the role of ferrous iron in the behavior of this bacterium in the environment.


Asunto(s)
Biopelículas , Hierro/metabolismo , Legionella pneumophila/fisiología , Ríos/microbiología , Legionella pneumophila/crecimiento & desarrollo , Legionella pneumophila/metabolismo
10.
Front Microbiol ; 7: 486, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27092135

RESUMEN

Legionella pneumophila, the major causative agent of Legionnaires' disease, is found in freshwater environments in close association with free-living amoebae and multispecies biofilms, leading to persistence, spread, biocide resistance, and elevated virulence of the bacterium. Indeed, legionellosis outbreaks are mainly due to the ability of this bacterium to colonize and persist in water facilities, despite harsh physical and chemical treatments. However, these treatments are not totally efficient and, after a lag period, L. pneumophila may be able to quickly re-colonize these systems. Several natural compounds (biosurfactants, antimicrobial peptides…) with anti-Legionella properties have recently been described in the literature, highlighting their specific activities against this pathogen. In this review, we first consider this hallmark of Legionella to resist killing, in regard to its biofilm or host-associated life style. Then, we focus more accurately on natural anti-Legionella molecules described so far, which could provide new eco-friendly and alternative ways to struggle against this important pathogen in plumbing.

11.
Environ Microbiol ; 17(4): 1338-50, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25141909

RESUMEN

Legionella pneumophila is a pathogenic bacterium commonly found in water. Eventually, it could be transmitted to humans via inhalation of contaminated aerosols. Iron is known as a key requirement for the growth of L. pneumophila in the environment and within its hosts. Many studies were performed to understand iron utilization by L. pneumophila but no global approaches were conducted. In this study, transcriptomic analyses were performed, comparing gene expression in L. pneumophila in standard versus iron restricted conditions. Among the regulated genes, a newly described one, lpp_2867, was highly induced in iron-restricted conditions. Mutants lacking this gene in L. pneumophila were not affected in siderophore synthesis or utilization. On the contrary, they were defective for growth on iron-depleted solid media and for ferrous iron uptake. A sequence analysis predicts that Lpp_2867 is a membrane protein, suggesting that it is involved in ferrous iron transport. We thus named it IroT, for iron transporter. Infection assays showed that the mutants are highly impaired in intracellular growth within their environmental host Acanthamoeba castellanii and human macrophages. Taken together, our results show that IroT is involved, directly or indirectly, in ferrous iron transport and is a key virulence factor for L. pneumophila.


Asunto(s)
Amoeba/microbiología , Hierro/metabolismo , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/microbiología , Macrófagos/microbiología , Proteínas de la Membrana/metabolismo , Factores de Virulencia/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Transporte Biológico , Humanos , Legionella pneumophila/genética , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Virulencia , Factores de Virulencia/genética
12.
Methods Mol Biol ; 954: 213-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23150397

RESUMEN

Biofilm formation could be studied in various conditions. Most of the studies with Legionella pneumophila used monospecies biofilm in culture media. In some cases, it is important to study bacteria in conditions more close to environmental conditions. In this paper, we describe protocols to produce natural biofilms from river water that were spiked with L. pneumophila.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Legionella pneumophila/fisiología , Medios de Cultivo , Agua Dulce/microbiología , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...