Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Chemistry ; : e202401283, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695306

RESUMEN

Understanding the interaction between fullerene (C60) and perovskite surfaces is pivotal for advancing the efficiency and stability of perovskite solar cells. In this study, we investigate the adsorption behavior of C60 on methylammonium lead iodide (MAPbI3) surfaces using periodic density functional theory calculations. We explore various surface terminations and defect configurations to elucidate the influence of surface morphology on the C60-perovskite interaction, computing the adsorption energy and transfer of charge. Our results reveal distinct adsorption energies and charge transfer mechanisms for different surface terminations, shedding light on the role of surface defects in modifying the electronic structure and stability of perovskite materials. Furthermore, we provide insights into the potential of C60 to passivate surface defects, playing a relevant role in the surface reconstruction after the formation of defects. This comprehensive understanding of C60-perovskite interactions offers valuable guidelines about the role of fullerenes on surface structure and reconstruction.

2.
Nat Chem ; 16(5): 809-816, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38321236

RESUMEN

Nanoporous materials have attracted great attention for gas storage, but achieving high volumetric storage capacity remains a challenge. Here, by using neutron powder diffraction, volumetric gas adsorption, inelastic neutron scattering and first-principles calculations, we investigate a magnesium borohydride framework that has small pores and a partially negatively charged non-flat interior for hydrogen and nitrogen uptake. Hydrogen and nitrogen occupy distinctly different adsorption sites in the pores, with very different limiting capacities of 2.33 H2 and 0.66 N2 per Mg(BH4)2. Molecular hydrogen is packed extremely densely, with about twice the density of liquid hydrogen (144 g H2 per litre of pore volume). We found a penta-dihydrogen cluster where H2 molecules in one position have rotational freedom, whereas H2 molecules in another position have a well-defined orientation and a directional interaction with the framework. This study reveals that densely packed hydrogen can be stabilized in small-pore materials at ambient pressures.

3.
Phys Chem Chem Phys ; 25(12): 8574-8582, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36883855

RESUMEN

The electrochemical conversion of CO2 into value-added chemicals is an important approach to recycling CO2. In this work, we have combined the most efficient metal catalysts for this reaction, namely Cu, Ag, and Au, as single-atom particles dispersed on a two-dimensional carbon nitride support, with the aim of exploring their performance in the CO2 reduction reaction. Here, we report density functional theory computations showing the effect of single metal-atom particles on the support. We found that bare carbon nitride needed a high overpotential to overcome the energy barrier for the first proton-electron transfer, while the second transfer was exergonic. The deposition of single metal atoms enhances the catalytic activity of the system as the first proton-electron transfer is favored in terms of energy, although strong binding energies were found for CO adsorption on Cu and Au single atoms. Our theoretical interpretations are consistent with the experimental evidence that the competitive H2 generation is favored due to the strong CO binding energies. Our computational study paves the road to finding suitable metals that catalyze the first proton-electron transfer in the carbon dioxide reduction reaction and produce reaction intermediates with moderate binding energies, promoting a spillover to the carbon nitride support and thereby serving as bifunctional electrocatalysts.

4.
Catal Sci Technol ; 13(5): 1425-1436, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36895514

RESUMEN

Rhodium-catalysed hydroformylation, effective tool in bulk and fine-chemical synthesis, predominantly uses soluble metal complexes. For that reason, the metal leaching and the catalyst recycling are still the major drawbacks of this process. Single-atom catalysts have emerged as a powerful tool to combine the advantages of both homogeneous and heterogeneous catalysts. Since using an appropriate support material is key to create stable, finely dispersed, single-atom catalysts, here we show that Rh atoms anchored on graphitic carbon nitride are robust catalysts for the hydroformylation reaction of styrene.

5.
Chemistry ; 29(28): e202300193, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-36688254

RESUMEN

For decades there were many attempts to dispense with stoichiometric amounts of metal reagents for the synthesis of secondary alcohols. In 2021, the synthetic results of Newman and collaborators pioneered a synthesis still with metals, but not as reactants. Instead, they serverd as catalytic engines. Here we present a description by means of Density Functional Theory calculations of how this process can occur, and an attempt is made to shed light on the mechanism that facilitates the attainment of secondary alcohols, emphasizing the eternal cross-coupling debate of whether the catalytically active species is Ni(0) or they are really taking shortcuts following the course of Ni(II). Effective Orbital analyses give a clear picture. Furthermore, this paper provides insight not only into the nature of the ligands of the metal catalyst but also the role of the base.

6.
Polymers (Basel) ; 15(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38231935

RESUMEN

The aim of this work is to investigate the influence of the ethanol content of adducts on the catalytic behavior of related Ziegler-Natta (ZN) catalysts in propylene homo- and copolymerizations (with 1-hexene comonomer) in terms of activity, isotacticity, H2 response, and comonomer incorporation. For this purpose, three MgCl2.nEtOH adducts with n values of 0.7, 1.2, and 2.8 were synthesized and used in the synthesis of related ZN catalysts. The catalysts were thoroughly characterized using XRD, BET, SEM, EDX, N2 adsorption-desorption, and DFT techniques. Additionally, the microstructure of the synthesized (co)polymers was distinguished via DSC, SSA, and TREF techniques. Their activity was found to enhance with the adduct's ethanol content in both homo- and copolymerization experiments, and the increase was more pronounced in homopolymerization reactions in the absence of H2. Furthermore, the catalyst with the highest ethanol content provided a copolymer with a lower isotacticity index, a shorter meso sequence length, and a more uniform distribution of comonomer within the chains. These results were attributed to the higher total surface area and Ti content of the corresponding catalyst, as well as its lower average pore diameter, a larger proportion of large pores compared to the other two catalysts, and its spherical open bud morphology. It affirms the importance of catalyst/support ethanol-content control during the preparation process. Then, molecular simulation was employed to shed light on the iso-specificity of the polypropylene produced via synthesized catalysts.

7.
Dalton Trans ; 51(33): 12585-12595, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35924789

RESUMEN

Ni(I) compounds are less common than those of either Ni(0) or Ni(II). Recently, a series of Ni(I) tris(2-pyridylmethyl)amine (TPA) complexes were synthetized through the reduction of Ni(II)-TPA complexes and their stabilization was attributed to the formation of H-bonds (Chem. Commun., 2021, 57, 753-756). Because of the growing relevance of Ni(I) complexes in the field of catalysis, we targeted density functional theory simulations to fully characterize the Ni(I) and Ni(II) TPA complexes and understand the role of H-bonding in the stability of Ni(I)-TPA complexes. Our results prove the important contribution of H-bonding in the stability of TPA-Ni(I)-F complexes, which is estimated to increase the Ni(I)-F strength by about 6 to 15 kcal mol-1.


Asunto(s)
Aminas , Catálisis , Enlace de Hidrógeno
8.
Nat Commun ; 13(1): 4934, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35995795

RESUMEN

Nonaqueous sodium-based batteries are ideal candidates for the next generation of electrochemical energy storage devices. However, despite the promising performance at ambient temperature, their low-temperature (e.g., < 0 °C) operation is detrimentally affected by the increase in the electrolyte resistance and solid electrolyte interphase (SEI) instability. Here, to circumvent these issues, we propose specific electrolyte formulations comprising linear and cyclic ether-based solvents and sodium trifluoromethanesulfonate salt that are thermally stable down to -150 °C and enable the formation of a stable SEI at low temperatures. When tested in the Na||Na coin cell configuration, the low-temperature electrolytes enable long-term cycling down to -80 °C. Via ex situ physicochemical (e.g., X-ray photoelectron spectroscopy, cryogenic transmission electron microscopy and atomic force microscopy) electrode measurements and density functional theory calculations, we investigate the mechanisms responsible for efficient low-temperature electrochemical performance. We also report the assembly and testing between -20 °C and -60 °C of full Na||Na3V2(PO4)3 coin cells. The cell tested at -40 °C shows an initial discharge capacity of 68 mAh g-1 with a capacity retention of approximately 94% after 100 cycles at 22 mA g-1.

9.
J Org Chem ; 87(5): 2873-2886, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35076236

RESUMEN

Compared to metal-organic complexes and transition-metal halides, group I metal halides are attractive catalysts for the crucial cycloaddition reaction of CO2 to epoxides as they are ubiquitously available and inexpensive, have a low molecular weight, and are not based on (potentially) endangered metals, especially for the case of sodium and potassium. Nevertheless, given their low intrinsic catalytic efficiency, they require the assistance of additional catalytic moieties. In this work, we show that by exploiting the high nucleophilicity of opportunely designed aminopyridines, catalytic systems based on alkaline metals can be formed, which allow the cycloaddition of CO2 to epoxides to proceed under atmospheric pressure at moderate temperatures. Importantly, the aminopyridine nucleophiles can be applied in their heterogenized form, leading to a recyclable catalytic system. An investigation of the reaction mechanism by density functional theory calculations shows that metal halide complexes and nucleophilic pyridines can work as a dual cooperative catalytic system where the use of aminopyridines leads to lower energy barriers for the opening of the epoxide ring, and halide-adducts are involved in the subsequent steps of CO2 insertion and ring closure.

10.
Phys Chem Chem Phys ; 20(31): 20439-20446, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30043015

RESUMEN

The unbridled emissions of gases derived from the use of fossil fuels have led to an excessive concentration of carbon dioxide (CO2) in the atmosphere with concomitant problems to the environment. It is therefore imperative that new cost-effective catalysts are developed to mitigate the resulting harmful effects through the activation and conversion of CO2 molecules. In this paper, we have used calculations based on the density functional theory (DFT), including two semi-empirical approaches for the long-range dispersion interactions (-D2 and -D3), to explore the interaction of CO2 with the surfaces of spinel-structured violarite (FeNi2S4). This ternary sulfide contains iron ions in the highest possible oxidation state, while the nickel atoms are in the mixed 2+/3+ valence state. We found that CO2 interaction with violarite is only moderate due to the repulsion between the oxygen lone pairs and the electronic clouds of the sulfur surface atoms. This suggests that the CO2 activation is not dictated by the presence of nickel, as compared to the pure iron-isomorph greigite (Fe3S4). These results differ from findings in (Ni,Fe) ferredoxin enzymes, where the Ni/Fe ratio influences the redox potential, which suggests that the periodic crystal structure of violarite may hinder its redox capability.

11.
J Am Chem Soc ; 138(26): 8269-78, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27308923

RESUMEN

The ever growing increase of CO2 concentration in the atmosphere is one of the main causes of global warming. Thus, CO2 activation and conversion toward valuable added compounds is a major scientific challenge. A new set of Au/δ-MoC and Cu/δ-MoC catalysts exhibits high activity, selectivity, and stability for the reduction of CO2 to CO with some subsequent selective hydrogenation toward methanol. Sophisticated experiments under controlled conditions and calculations based on density functional theory have been used to study the unique behavior of these systems. A detailed comparison of the behavior of Au/ß-Mo2C and Au/δ-MoC catalysts provides evidence of the impact of the metal/carbon ratio in the carbide on the performance of the catalysts. The present results show that this ratio governs the chemical behavior of the carbide and the properties of the admetal, up to the point of being able to switch the rate and mechanism of the process for CO2 conversion. A control of the metal/carbon ratio paves the road for an efficient reutilization of this environmental harmful greenhouse gas.

12.
J Chem Phys ; 143(11): 114704, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26395725

RESUMEN

The atomic structure and electronic properties of Cun nanoclusters (n = 4, 6, 7, and 10) supported on cubic nonpolar δ-MoC(001) and orthorhombic C- or Mo-terminated polar ß-Mo2 C(001) surfaces have been investigated by means of periodic density functional theory based calculations. The electronic properties have been analyzed by means of the density of states, Bader charges, and electron localization function plots. The Cu nanoparticles supported on ß-Mo2 C(001), either Mo- or C-terminated, tend to present a two-dimensional structure whereas a three-dimensional geometry is preferred when supported on δ-MoC(001), indicating that the Mo:C ratio and the surface polarity play a key role determining the structure of supported clusters. Nevertheless, calculations also reveal important differences between the C- and Mo-terminated ß-Mo2 C(001) supports to the point that supported Cu particles exhibit different charge states, which opens a way to control the reactivity of these potential catalysts.

13.
Phys Chem Chem Phys ; 16(28): 14912-21, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-24931917

RESUMEN

The adsorption and activation of a CO2 molecule on cubic δ-MoC(001) and orthorhombic ß-Mo2C(001) surfaces have been investigated by means of periodic density functional theory based calculations using the Perdew-Burke-Ernzerhof exchange-correlation functional and explicitly accounting for (or neglecting) the dispersive force term description as proposed by Grimme. The DFT results indicate that an orthorhombic ß-Mo2C(001) Mo-terminated polar surface provokes the spontaneous cleavage of a C-O bond in CO2 and carbon monoxide formation, whereas on a ß-Mo2C(001) C-terminated polar surface or on a δ-MoC(001) nonpolar surface the CO2 molecule is activated yet the C-O bond prevails. Experimental tests showed that Mo-terminated ß-Mo2C(001) easily adsorbs and decomposes the CO2 molecule. This surface is an active catalyst for the hydrogenation of CO2 to methanol and methane. Although MoC does not dissociate C-O bonds on its own, it binds CO2 better than transition metal surfaces and is an active and selective catalyst for the CO2 + 3H2 → CH3OH + H2O reaction. Our theoretical and experimental results illustrate the tremendous impact that the carbon/metal ratio has on the chemical and catalytic properties of molybdenum carbides. This ratio must be taken into consideration when designing catalysts for the activation and conversion of CO2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...