Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 902: 166061, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37543339

RESUMEN

Climate change and marine litter are inextricably linked, and their interaction manifests differently depending on the specific environmental and biological characteristics, and other human activities taking place. The negative impacts resulting from those synergistic interactions are threatening coastal and marine ecosystems and the many goods and services they provide. This is particularly pervasive in the coastal zone of the Indian subcontinent. India is already experiencing severe climate change impacts, which are projected to worsen in the future. At the same time, the country is gripped by a litter crisis that is overwhelming authorities and communities and hindering the country's sustainable development goals. The coastal environment and communities of the southern states of Kerala and Tamil Nadu are particularly vulnerable to the impacts of climate change. While these state governments and authorities are stepping up efforts to improve the management of their coastal zones, the scale and severity of these issues are mounting. Here we review the combined effects of climate change and marine litter pollution in Southern India, focusing on the Gulf of Mannar Reserve in Tamil Nadu and the Malabar Coast in Kerala. Finally, we discuss effective management options that could help improve resilience and sustainability.

2.
Sci Rep ; 8(1): 14772, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30283099

RESUMEN

Man-made structures including rigs, pipelines, cables, renewable energy devices, and ship wrecks, offer hard substrate in the largely soft-sediment environment of the North Sea. These structures become colonised by sedentary organisms and non-migratory reef fish, and form local ecosystems that attract larger predators including seals, birds, and fish. It is possible that these structures form a system of interconnected reef environments through the planktonic dispersal of the pelagic stages of organisms by ocean currents. Changes to the overall arrangement of hard substrate areas through removal or addition of individual man-made structures will affect the interconnectivity and could impact on the ecosystem. Here, we assessed the connectivity of sectors with oil and gas structures, wind farms, wrecks, and natural hard substrate, using a model that simulates the drift of planktonic stages of seven organisms with sedentary adult stages associated with hard substrate, applied to the period 2001-2010. Connectivity was assessed using a classification system designed to address the function of sectors in the network. Results showed a relatively stable overall spatial distribution of sector function but with distinct variations between species and years. The results are discussed in the context of decommissioning of oil and gas infrastructure in the North Sea.


Asunto(s)
Organismos Acuáticos/crecimiento & desarrollo , Ecosistema , Monitoreo del Ambiente , Peces/crecimiento & desarrollo , Animales , Humanos , Larva/crecimiento & desarrollo , Mar del Norte , Energía Renovable
3.
Proc Natl Acad Sci U S A ; 115(43): E10275-E10282, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30297399

RESUMEN

Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from <10% of seabed area in Australian and New Zealand waters, the Aleutian Islands, East Bering Sea, South Chile, and Gulf of Alaska to >50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when high-resolution spatial data are unavailable. If SAR was ≤0.1, as in 8 of 24 regions, there was >95% probability that >90% of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≤0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing.


Asunto(s)
Explotaciones Pesqueras/estadística & datos numéricos , Alaska , Animales , Australia , Biodiversidad , Chile , Ecosistema , Invertebrados/fisiología , Nueva Zelanda , Océanos y Mares , Alimentos Marinos/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA