Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(47): 29968-29978, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33154158

RESUMEN

Potassium channels can become nonconducting via inactivation at a gate inside the highly conserved selectivity filter (SF) region near the extracellular side of the membrane. In certain ligand-gated channels, such as BK channels and MthK, a Ca2+-activated K+ channel from Methanobacterium thermoautotrophicum, the SF has been proposed to play a role in opening and closing rather than inactivation, although the underlying conformational changes are unknown. Using X-ray crystallography, identical conductive MthK structures were obtained in wide-ranging K+ concentrations (6 to 150 mM), unlike KcsA, whose SF collapses at low permeant ion concentrations. Surprisingly, three of the SF's four binding sites remained almost fully occupied throughout this range, indicating high affinities (likely submillimolar), while only the central S2 site titrated, losing its ion at 6 mM, indicating low K+ affinity (∼50 mM). Molecular simulations showed that the MthK SF can also collapse in the absence of K+, similar to KcsA, but that even a single K+ binding at any of the SF sites, except S4, can rescue the conductive state. The uneven titration across binding sites differs from KcsA, where SF sites display a uniform decrease in occupancy with K+ concentration, in the low millimolar range, leading to SF collapse. We found that ions were disfavored in MthK's S2 site due to weaker coordination by carbonyl groups, arising from different interactions with the pore helix and water behind the SF. We conclude that these differences in interactions endow the seemingly identical SFs of KcsA and MthK with strikingly different inactivating phenotypes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Activación del Canal Iónico/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Dominios Proteicos/fisiología , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Cristalografía por Rayos X , Canales de Potasio de Gran Conductancia Activados por el Calcio/aislamiento & purificación , Canales de Potasio de Gran Conductancia Activados por el Calcio/ultraestructura , Methanobacterium , Simulación de Dinámica Molecular , Potasio/metabolismo
2.
Methods Mol Biol ; 1684: 223-235, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29058195

RESUMEN

Quantitative investigations into functional properties of purified ion channel proteins using standard electrophysiological methods are challenging, in particular for the determination of average ion channel behavior following rapid changes in experimental conditions (e.g., ligand concentration). Here, we describe a method for determining the functional activity of liposome-reconstituted K+ channels using a stopped-flow fluorometric ion flux assay. Channel activity is quantified by measuring the rate of fluorescence decrease of a liposome-encapsulated fluorophore, specifically quenched by thallium ions entering the liposomes via open channels. This method is well suited for studying the lipid bilayer dependence of channel activity, the activation and desensitization kinetics of ligand-dependent K+ channels, and channel modulation by channel agonists, blockers, or other antagonists.


Asunto(s)
Grasas/química , Canales Iónicos Activados por Ligandos/metabolismo , Canales de Potasio/metabolismo , Animales , Fluorometría , Humanos , Membrana Dobles de Lípidos/metabolismo , Liposomas/metabolismo
3.
Elife ; 62017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28994652

RESUMEN

Potassium channels are opened by ligands and/or membrane potential. In voltage-gated K+ channels and the prokaryotic KcsA channel, conduction is believed to result from opening of an intracellular constriction that prevents ion entry into the pore. On the other hand, numerous ligand-gated K+ channels lack such gate, suggesting that they may be activated by a change within the selectivity filter, a narrow region at the extracellular side of the pore. Using molecular dynamics simulations and electrophysiology measurements, we show that ligand-induced conformational changes in the KcsA channel removes steric restraints at the selectivity filter, thus resulting in structural fluctuations, reduced K+ affinity, and increased ion permeation. Such activation of the selectivity filter may be a universal gating mechanism within K+ channels. The occlusion of the pore at the level of the intracellular gate appears to be secondary.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/metabolismo , Potasio/metabolismo , Activación del Canal Iónico , Simulación de Dinámica Molecular , Conformación Proteica
4.
J Gen Physiol ; 148(2): 119-32, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27432996

RESUMEN

The process of ion channel gating-opening and closing-involves local and global structural changes in the channel in response to external stimuli. Conformational changes depend on the energetic landscape that underlies the transition between closed and open states, which plays a key role in ion channel gating. For the prokaryotic, pH-gated potassium channel KcsA, closed and open states have been extensively studied using structural and functional methods, but the dynamics within each of these functional states as well as the transition between them is not as well understood. In this study, we used solution nuclear magnetic resonance (NMR) spectroscopy to investigate the conformational transitions within specific functional states of KcsA. We incorporated KcsA channels into lipid bicelles and stabilized them into a closed state by using either phosphatidylcholine lipids, known to favor the closed channel, or mutations designed to trap the channel shut by disulfide cross-linking. A distinct state, consistent with an open channel, was uncovered by the addition of cardiolipin lipids. Using selective amino acid labeling at locations within the channel that are known to move during gating, we observed at least two different slowly interconverting conformational states for both closed and open channels. The pH dependence of these conformations and the predictable disruptions to this dependence observed in mutant channels with altered pH sensing highlight the importance of conformational heterogeneity for KcsA gating.


Asunto(s)
Proteínas Bacterianas/metabolismo , Lípidos , Canales de Potasio/metabolismo , Cristalografía por Rayos X , Activación del Canal Iónico , Conformación Proteica
5.
Trends Pharmacol Sci ; 37(7): 522-542, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27233519

RESUMEN

Neuropathic pain arises from injury to the nervous system. Conditions associated with neuropathic pain are diverse, and lesions and/or pathological changes in the central nervous system (CNS) or peripheral nervous system (PNS) can frequently, but not always, be identified. It is difficult to treat, with patients often on multiple, different classes of medications, all with appreciable adverse side effect profiles. Consequently, there is a pressing need for the development of new medications. The development of such therapeutics is predicated on a clear understanding of the relevant molecular and cellular processes that contribute to the development, and maintenance, of the neuropathic pain state. One proposed mechanism thought to contribute to the ontogeny of neuropathic pain is altered expression, trafficking, and functioning of ion channels expressed by primary sensory neurons. Here, we will focus on three voltage-gated ion channel families, CaV, HCN, and NaV, first reviewing the preclinical data and then the human data where it exists.


Asunto(s)
Canales Iónicos/antagonistas & inhibidores , Neuralgia/tratamiento farmacológico , Sistema Nervioso Periférico/fisiología , Animales , Canales de Calcio Tipo N/fisiología , Canales de Calcio Tipo T/fisiología , Compuestos Heterocíclicos con 2 Anillos/uso terapéutico , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/antagonistas & inhibidores , Canales Iónicos/fisiología , Canal de Sodio Activado por Voltaje NAV1.8/fisiología , Canal de Sodio Activado por Voltaje NAV1.9/fisiología , Neuralgia/fisiopatología , Sulfonamidas/uso terapéutico
6.
Nat Commun ; 6: 8342, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26395539

RESUMEN

Ion channel opening and closing are fundamental to cellular signalling and homeostasis. Gates that control K(+) channel activity were found both at an intracellular pore constriction and within the selectivity filter near the extracellular side but the specific location of the gate that opens Ca(2+)-activated K(+) channels has remained elusive. Using the Methanobacterium thermoautotrophicum homologue (MthK) and a stopped-flow fluorometric assay for fast channel activation, we show that intracellular quaternary ammonium blockers bind to closed MthK channels. Since the blockers are known to bind inside a central channel cavity, past the intracellular entryway, the gate must be within the selectivity filter. Furthermore, the blockers access the closed channel slower than the open channel, suggesting that the intracellular entryway narrows upon pore closure, without preventing access of either the blockers or the smaller K(+). Thus, Ca(2+)-dependent gating in MthK occurs at the selectivity filter with coupled movement of the intracellular helices.


Asunto(s)
Calcio/metabolismo , Methanobacterium/metabolismo , Canales de Potasio/metabolismo , Cinética , Compuestos de Amonio Cuaternario
7.
J Gen Physiol ; 142(6): 613-24, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24218397

RESUMEN

The bacterial potassium channel KcsA is gated open by the binding of protons to amino acids on the intracellular side of the channel. We have identified, via channel mutagenesis and x-ray crystallography, two pH-sensing amino acids and a set of nearby residues involved in molecular interactions that influence gating. We found that the minimal mutation of one histidine (H25) and one glutamate (E118) near the cytoplasmic gate completely abolished pH-dependent gating. Mutation of nearby residues either alone or in pairs altered the channel's response to pH. In addition, mutations of certain pairs of residues dramatically increased the energy barriers between the closed and open states. We proposed a Monod-Wyman-Changeux model for proton binding and pH-dependent gating in KcsA, where H25 is a "strong" sensor displaying a large shift in pKa between closed and open states, and E118 is a "weak" pH sensor. Modifying model parameters that are involved in either the intrinsic gating equilibrium or the pKa values of the pH-sensing residues was sufficient to capture the effects of all mutations.


Asunto(s)
Proteínas Bacterianas/metabolismo , Activación del Canal Iónico , Simulación de Dinámica Molecular , Canales de Potasio con Entrada de Voltaje/metabolismo , Protones , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Datos de Secuencia Molecular , Mutación , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética
8.
Nat Struct Mol Biol ; 20(2): 159-66, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23262489

RESUMEN

Understanding how ion channels open and close their pores is crucial for comprehending their physiological roles. We used intracellular quaternary ammonium blockers, electrophysiology and X-ray crystallography to locate the voltage-dependent gate in MthK potassium channels from Methanobacterium thermoautotrophicum. Blockers bind in an aqueous cavity between two putative gates: an intracellular gate and the selectivity filter. Thus, these blockers directly probe gate location--an intracellular gate will prevent binding when closed, whereas a selectivity filter gate will always allow binding. Kinetic analysis of tetrabutylammonium block of single MthK channels combined with X-ray crystallographic analysis of the pore with tetrabutyl antimony unequivocally determined that the voltage-dependent gate, like the C-type inactivation gate in eukaryotic channels, is located at the selectivity filter. State-dependent binding kinetics suggest that MthK inactivation leads to conformational changes within the cavity and intracellular pore entrance.


Asunto(s)
Activación del Canal Iónico/fisiología , Methanobacterium/metabolismo , Modelos Moleculares , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/metabolismo , Conformación Proteica , Cristalografía por Rayos X , Cinética , Compuestos de Amonio Cuaternario
9.
Neuron ; 59(1): 98-109, 2008 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-18614032

RESUMEN

Voltage-driven activation of Kv channels results from conformational changes of four voltage sensor domains (VSDs) that surround the K(+) selective pore domain. How the VSD helices rearrange during gating is an area of active research. Luminescence resonance energy transfer (LRET) is a powerful spectroscopic ruler uniquely suitable for addressing the conformational trajectory of these helices. Using a geometric analysis of numerous LRET measurements, we were able to estimate LRET probe positions relative to existing structural models. The experimental movement of helix S4 does not support a large 15-20 A transmembrane "paddle-type" movement or a near-zero A vertical "transporter-type" model. Rather, our measurements demonstrate a moderate S4 displacement of 10 +/- 5 A, with a vertical component of 5 +/- 2 A. The S3 segment moves 2 +/- 1 A in the opposite direction and is therefore not moving as an S3-S4 rigid body.


Asunto(s)
Activación del Canal Iónico/fisiología , Potasio/metabolismo , Canales de Potasio de la Superfamilia Shaker/fisiología , Secuencia de Aminoácidos , Animales , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Membrana Dobles de Lípidos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Modelos Biológicos , Modelos Moleculares , Oocitos , Técnicas de Placa-Clamp , Conformación Proteica , Estructura Terciaria de Proteína , Xenopus laevis
10.
Proc Natl Acad Sci U S A ; 105(19): 6900-5, 2008 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-18443286

RESUMEN

The bacterial potassium channel KcsA is gated by high concentrations of intracellular protons, allowing the channel to open at pH < 5.5. Despite prior attempts to determine the mechanism responsible for pH gating, the proton sensor has remained elusive. We have constructed a KcsA channel mutant that remains open up to pH 9.0 by replacing key ionizable residues from the N and C termini of KcsA with residues mimicking their protonated counterparts with respect to charge. A series of individual and combined mutations were investigated by using single-channel recordings in lipid bilayers. We propose that these residues are the proton-binding sites and at neutral pH they form a complex network of inter- and intrasubunit salt bridges and hydrogen bonds near the bundle crossing that greatly stabilize the closed state. In our model, these residues change their ionization state at acidic pH, thereby disrupting this network, modifying the electrostatic landscape near the channel gate, and favoring channel opening.


Asunto(s)
Técnicas Biosensibles , Proteínas de Escherichia coli/química , Modelos Moleculares , Canales de Potasio/química , Proteínas Bacterianas , Ácido Glutámico/química , Histidina/química , Concentración de Iones de Hidrógeno , Activación del Canal Iónico , Mutación/genética , Canales de Potasio con Entrada de Voltaje , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
11.
Nature ; 436(7052): 848-51, 2005 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-16094368

RESUMEN

Voltage-gated ion channels open and close in response to voltage changes across electrically excitable cell membranes. Voltage-gated potassium (Kv) channels are homotetramers with each subunit constructed from six transmembrane segments, S1-S6 (ref. 2). The voltage-sensing domain (segments S1-S4) contains charged arginine residues on S4 that move across the membrane electric field, modulating channel open probability. Understanding the physical movements of this voltage sensor is of fundamental importance and is the subject of controversy. Recently, the crystal structure of the KvAP channel motivated an unconventional 'paddle model' of S4 charge movement, indicating that the segments S3b and S4 might move as a unit through the lipid bilayer with a large (15-20-A) transmembrane displacement. Here we show that the voltage-sensor segments do not undergo significant transmembrane translation. We tested the movement of these segments in functional Shaker K+ channels by using luminescence resonance energy transfer to measure distances between the voltage sensors and a pore-bound scorpion toxin. Our results are consistent with a 2-A vertical displacement of S4, not the large excursion predicted by the paddle model. This small movement supports an alternative model in which the protein shapes the electric field profile, focusing it across a narrow region of S4 (ref. 6).


Asunto(s)
Transferencia de Energía , Activación del Canal Iónico , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Mediciones Luminiscentes , Movimiento , Oocitos/metabolismo , Potasio/metabolismo , Canales de Potasio/química , Canales de Potasio/genética , Canales de Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio de la Superfamilia Shaker , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...