Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2161: 229-246, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32681516

RESUMEN

RNA can bind within the major groove of purine-rich DNA via Hoogsteen base pairing and form a triple helical RNA-DNA structure that anchors the RNA to specific DNA sequences, thereby targeting RNA-associated regulatory proteins to distinct genomic sites. Here we present methods to analyze the potential of a given RNA to form triplexes in vitro and to validate these structures in vivo.


Asunto(s)
ADN/química , Ensayo de Cambio de Movilidad Electroforética/métodos , ARN/química , Células HeLa , Humanos , Conformación de Ácido Nucleico
2.
Cell Rep ; 26(11): 2904-2915.e4, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30865882

RESUMEN

Transcription of the proto-oncogene SPHK1 is regulated by KHPS1, an antisense RNA that activates SPHK1 expression by forming a triple-helical RNA-DNA-DNA structure at the SPHK1 enhancer. Triplex-mediated tethering of KHPS1 to its target gene is required for recruitment of E2F1 and p300 and transcription of the RNA derived from the SPHK1 enhancer (eRNA-Sphk1). eRNA-Sphk1 evicts CTCF, which insulates the enhancer from the SPHK1 promoter, thus facilitating SPHK1 expression. Genomic deletion of the triplex-forming sequence attenuates SPHK1 expression, leading to decreased cell migration and invasion. Replacement of the triplex-forming region (TFR) of KHPS1 by the TFR of the lncRNA MEG3 tethers KHPS1 to the MEG3 target gene TGFBR1, underscoring the interchangeability and anchoring function of sequences involved in triplex formation. Altogether, the results reveal a triplex-driven feedforward mechanism involving lncRNA-dependent induction of eRNA, which enhances expression of specific target genes.


Asunto(s)
Elementos de Facilitación Genéticos , Epigénesis Genética , ARN Largo no Codificante/metabolismo , Células 3T3 , Animales , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Ratones , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proto-Oncogenes Mas , ARN Largo no Codificante/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo
3.
Mol Cell ; 60(4): 626-36, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26590717

RESUMEN

Although thousands of long noncoding RNAs (lncRNAs) have been discovered, very little is known about their mode of action. Here we functionally characterize an E2F1-regulated lncRNA named Khps1, which is transcribed in antisense orientation to the proto-oncogene SPHK1. Khps1 activates SPHK1 expression by recruiting the histone acetyltransferase p300/CBP to the SPHK1 promoter, which leads to local changes of the chromatin structure that ensures E2F1 binding and enhances transcription. Mechanistically, this is achieved by direct association of Khps1 with a homopurine stretch upstream of the transcription start site of SPHK1, which forms a DNA-RNA triplex that anchors the lncRNA and associated effector proteins to the gene promoter. The results reveal an lncRNA- and E2F1-driven regulatory loop in which E2F1-dependent induction of antisense RNA leads to changes in chromatin structure, facilitating E2F1-dependent expression of SPHK1 and restriction of E2F1-induced apoptosis.


Asunto(s)
Ensamble y Desensamble de Cromatina , Factor de Transcripción E2F1/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , ARN Largo no Codificante/metabolismo , Apoptosis , Proliferación Celular , Regulación de la Expresión Génica , Células Hep G2 , Humanos , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Proto-Oncogenes Mas , Factores de Transcripción p300-CBP/metabolismo
5.
Epigenetics ; 9(1): 53-61, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24121539

RESUMEN

A significant fraction of eukaryotic genomes comprises repetitive sequences, including rRNA genes, centromeres, telomeres, and retrotransposons. Repetitive elements are hotspots for recombination and represent a serious challenge for genome integrity. Maintaining these repeated elements in a compact heterochromatic structure suppresses recombination and unwanted mutagenic transposition, and is therefore indispensable for genomic stability. Paradoxically, repetitive elements are not transcriptionally inert, but produce RNA that has important functions in regulating and reinforcing the heterochromatic state. Here, we review the role of non-coding RNA (ncRNA) in recruiting chromatin-modifying enzymes to repetitive genomic loci to establish a repressive chromatin structure that safeguards chromosome integrity and genome stability.


Asunto(s)
Heterocromatina/metabolismo , ARN no Traducido/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Centrómero/genética , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Genes de ARNr , Inestabilidad Genómica , Heterocromatina/genética , Humanos , ARN no Traducido/genética , Retroelementos , Telómero/genética
6.
EMBO Rep ; 14(8): 704-10, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23797874

RESUMEN

Constitutive heterochromatin is crucial for the integrity of chromosomes and genomic stability. Here, we show that the chromatin remodelling complex NoRC, known to silence a fraction of rRNA genes, also establishes a repressive heterochromatic structure at centromeres and telomeres, preserving the structural integrity of these repetitive loci. Knockdown of NoRC leads to relaxation of centromeric and telomeric heterochromatin, abnormalities in mitotic spindle assembly, impaired chromosome segregation and enhanced chromosomal instability. The results demonstrate that NoRC safeguards genomic stability by coordinating enzymatic activities that establish features of repressive chromatin at centromeric and telomeric regions, and this heterochromatic structure is required for sustaining genomic integrity.


Asunto(s)
Centrómero/metabolismo , Ensamble y Desensamble de Cromatina , Genes de ARNr , Heterocromatina/genética , Mitosis , Telómero/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteína A Centromérica , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Regulación de la Expresión Génica , Inestabilidad Genómica , Células HeLa , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA