Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mass Spectrom ; 54(10): 802-816, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31410948

RESUMEN

Histidine is an aromatic amino acid crucial for the biological functioning of proteins and enzymes. When biological matter is exposed to ionising radiation, highly energetic particles interact with the surrounding tissue which leads to efficient formation of low-energy electrons. In the present study, the interaction of low-energy electrons with gas-phase histidine is studied at a molecular level in order to extend the knowledge of electron-induced reactions with amino acids. We report both on the formation of positive ions formed by electron ionisation and negative ions induced by electron attachment. The experimental data were complemented by quantum chemical calculations. Specifically, the free energies for possible fragmentation reactions were derived for the τ and the π tautomer of histidine to get insight into the structures of the formed ions and the corresponding neutrals. We report the experimental ionisation energy of (8.48 ± 0.03) eV for histidine which is in good agreement with the calculated vertical ionisation energy. In the case of negative ions, the dehydrogenated parent anion is the anion with the highest mass observed upon dissociative electron attachment. The comparison of experimental and computational results was also performed in view of a possible thermal decomposition of histidine during the experiments, since the sample was sublimated in the experiment by resistive heating of an oven. Overall, the present study demonstrates the effects of electrons as secondary particles in the chemical degradation of histidine. The reactions induced by those electrons differ when comparing positive and negative ion formation. While for negative ions, simple bond cleav ages prevail, the observed fragment cations exhibit partly restructuring of the molecule during the dissociation process.


Asunto(s)
Histidina/química , Electrones , Calefacción , Iones/química , Espectrometría de Masas , Modelos Químicos , Conformación Molecular , Teoría Cuántica , Termodinámica
2.
Phys Chem Chem Phys ; 20(14): 9554-9560, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29577136

RESUMEN

Adducts formed between small gold cluster cations and helium atoms are reported for the first time. These binary ions, Aun+Hem, were produced by electron ionization of helium nanodroplets doped with neutral gold clusters and were detected using mass spectrometry. For a given value of n, the distribution of ions as a function of the number of added helium atoms, m, has been recorded. Peaks with anomalously high intensities, corresponding to so-called magic number ions, are identified and interpreted in terms of the geometric structures of the underlying Aun+ ions. These features can be accounted for by planar structures for Aun+ ions with n ≤ 7, with the addition of helium having no significant effect on the structures of the underlying gold cluster ions. According to ion mobility studies and some theoretical predictions, a 3-D structure is expected for Au8+. However, the findings for Au8+ in this work are more consistent with a planar structure.

3.
J Phys Chem Lett ; 9(6): 1237-1242, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29470071

RESUMEN

Helium is considered an almost ideal tagging atom for cold messenger spectroscopy experiments. Although helium is bound very weakly to the ionic molecule of interest, helium tags can lead to shifts and broadenings that we recorded near 963.5 nm in the electronic excitation spectrum of C60+ solvated with up to 100 helium atoms. Dedicated quantum calculations indicate that the inhomogeneous broadening is due to different binding energies of helium to the pentagonal and hexagonal faces of C60+, their dependence on the electronic state, and the numerous isomeric structures that become available for intermediate coverage. Similar isomeric effects can be expected for optical spectra of most larger molecules surrounded by nonabsorbing weakly bound solvent molecules, a situation encountered in many messenger-tagging spectroscopy experiments.

4.
Phys Chem Chem Phys ; 19(41): 27968-27973, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-29022968

RESUMEN

Mass spectra of helium nanodroplets doped with H2 and coronene feature anomalies in the ion abundance that reveal anomalies in the energetics of adsorption sites. The coronene monomer ion strongly adsorbs up to n = 38 H2 molecules indicating a commensurate solvation shell that preserves the D6h symmetry of the substrate. No such feature is seen in the abundance of the coronene dimer through tetramer complexed with H2; this observation rules out a vertical columnar structure. Instead we see evidence for a columnar structure in which adjacent coronenes are displaced in parallel, forming terraces that offer additional strong adsorption sites. The experimental value for the number of adsorption sites per terrace, approximately six, barely depends on the number of coronene molecules. The displacement estimated from this number exceeds the value reported in several theoretical studies of the bare, neutral coronene dimer.

5.
Phys Chem Chem Phys ; 18(4): 3048-55, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26739363

RESUMEN

We show, both experimentally and theoretically, that the adsorption of CO2 is sensitive to charge on a capturing model carbonaceous surface. In the experiment we doped superfluid helium droplets with C60 and CO2 and exposed them to ionising free electrons. Both positively and negatively charged C60(CO2)n(+/-) cluster ion distributions are observed using a high-resolution mass spectrometer and they show remarkable and reproducible anomalies in intensities that are strongly dependent on the charge. The highest adsorption capacity is seen with C60(+). Complementary density functional theory calculations and molecular dynamics simulations provided insight into the nature of the interaction of charged C60 with CO2 as well as trends in the packing of C60(+) and C60(-). The quadrupole moment of CO2 itself was found to be decisive in determining the charge dependence of the observed adsorption features. Our findings are expected to be applied for the adsorption of CO2 on charged surfaces in general.

6.
J Phys Chem C Nanomater Interfaces ; 119(36): 20917-20922, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26401190

RESUMEN

Electron addition to cobalt tricarbonyl nitrosyl (Co(CO3NO) and its clusters has been explored in helium nanodroplets. Anions were formed by adding electrons with controlled energies, and reaction products were identified by mass spectrometry. Dissociative electron attachment (DEA) to the Co(CO)3NO monomer gave reaction products similar to those reported in earlier gas phase experiments. However, loss of NO was more prevalent than loss of CO, in marked contrast to the gas phase. Since the Co-N bond is significantly stronger than the Co-C bond, this preference for NO loss must be driven by selective reaction dynamics at low temperature. For [Co(CO)3NO] N clusters, the DEA chemistry is similar to that of the monomer, but the anion yields as a function of electron energy show large differences, with the relatively sharp resonances of the monomer being replaced by broad profiles peaking at much higher electron energies. A third experiment involved DEA of Co(CO)3NO on a C60 molecule in an attempt to simulate the effect of a surface. Once again, broad ion yield curves are seen, but CO loss now becomes the most probable reaction channel. The implication of these findings for understanding focused electron beam induced deposition of cobalt is described.

7.
Int J Mass Spectrom ; 379: 194-199, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26109907

RESUMEN

The availability of high resolution mass spectrometry in the study of atomic and molecular clusters opens up challenges for the interpretation of the data. In complex systems each resolved mass peak may contain contributions from multiple species because of the isotope structure of constituent elements and because a multitude of different types of clusters with different compositions are present. A computational procedure which can help to identify a specific cluster from this complex dataset and quantify its relative abundance would be extremely helpful to many who work in this field. Here some new software designed for this purpose, known as IsotopeFit, is described.

8.
Phys Chem Chem Phys ; 17(19): 12598-607, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25899156

RESUMEN

Nitroimidazoles are important compounds with chemotherapeutic applications as antibacterial drugs or as radiosensitizers in radiotherapy. Despite their use in biological applications, little is known about the fundamental properties of these compounds. Understanding the ionization reactions of these compounds is crucial in evaluating the radiosensitization potential and in developing new and more effective drugs. Thus, the present study investigates the decomposition of negative and positive ions of 2-nitroimidazole and 4(5)-nitroimidazole using low- and high-energy Collision-Induced Dissociation (CID) and Electron-Induced Dissociation (EID) by two different mass spectrometry techniques and is supported by quantum chemistry calculations. EID of [M+H](+) leads to more extensive fragmentation than CID and involves many radical cleavages including loss of H˙ leading to the formation of the radical cation, M˙(+). The stability (metastable decay) and the fragmentation (high-energy CID) of the radical cation M˙(+) have been probed in a crossed-beam experiment involving primary electron ionization of the neutral nitroimidazole. Thus, fragments in the EID spectra of [M+H](+) that come from further dissociation of radical cation M˙(+) have been highlighted. The loss of NO˙ radical from M˙(+) is associated with a high Kinetic Energy Release (KER) of 0.98 eV. EID of [M-H](-) also leads to additional fragments compared to CID, however, with much lower cross section. Only EID of [M+H](+) leads to a slight difference in the decomposition of 2-nitroimidazole and 4(5)-nitroimidazole.


Asunto(s)
Electrones , Modelos Moleculares , Nitroimidazoles/química , Conformación Molecular , Óxido Nítrico/química , Vibración
9.
J Chem Phys ; 142(10): 104306, 2015 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-25770539

RESUMEN

The effects of interactions between He(-) and clusters of fullerenes in helium nanodroplets are described. Electron transfer from He(-) to (C60)n and (C70)n clusters results in the formation of the corresponding fullerene cluster dianions. This unusual double electron transfer appears to be concerted and is most likely guided by electron correlation between the two very weakly bound outer electrons in He(-). We suggest a mechanism which involves long range electron transfer followed by the conversion of He(+)into He2 (+), where formation of the He-He bond in He2 (+) releases sufficient kinetic energy for the cation and the dianion to escape their Coulombic attraction. By analogy with the corresponding dications, the observation of a threshold size of n ≥ 5 for formation of both (C60)n (2-) and (C70)n (2-) is attributed to Coulomb explosion rather than an energetic constraint. We also find that smaller dianions can be observed if water is added as a co-dopant. Other aspects of He(-) chemistry that are explored include its role in the formation of multiply charged fullerene cluster cations and the sensitivity of cluster dianion formation on the incident electron energy.

10.
Angew Chem Int Ed Engl ; 53(50): 13794-7, 2014 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-25296629

RESUMEN

The formation of dianions in helium nanodroplets is reported for the first time. The fullerene cluster dianions (C60)n(2-) and (C70)n(2-) were observed by mass spectrometry for n≥5 when helium droplets containing the appropriate fullerene were subjected to electron impact at approximately 22 eV. A new mechanism for dianion formation is described, which involves a two-electron transfer from the metastable He(-) ion. As well as the prospect of studying other dianions at low temperature using helium nanodroplets, this work opens up the possibility of a wider investigation of the chemistry of He(-), a new electron-donating reagent.

11.
J Phys Chem Lett ; 5(14): 2444-2449, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25068008

RESUMEN

Helium droplets provide the possibility to study phenomena at the very low temperatures at which quantum mechanical effects are more pronounced and fewer quantum states have significant occupation probabilities. Understanding the migration of either positive or negative charges in liquid helium is essential to comprehend charge-induced processes in molecular systems embedded in helium droplets. Here, we report the resonant formation of excited metastable atomic and molecular helium anions in superfluid helium droplets upon electron impact. Although the molecular anion is heliophobic and migrates toward the surface of the helium droplet, the excited metastable atomic helium anion is bound within the helium droplet and exhibits high mobility. The atomic anion is shown to be responsible for the formation of molecular dopant anions upon charge transfer and thus, we clarify the nature of the previously unidentified fast exotic negative charge carrier found in bulk liquid helium.

12.
J Phys Chem A ; 118(33): 6553-9, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-24818738

RESUMEN

Electron attachment to CO2 embedded in superfluid He droplets leads to ionic complexes of the form (CO2)n(-) and (CO2)nO(-) and, at much lower intensities, He containing ions of the form Hem(CO2)nO(-). At low energies (<5 eV), predominantly the non-decomposed complexes (CO2)n(-) are formed via two resonance contributions, similar to electron attachment to pristine CO2 clusters. The significantly different shapes and relative resonance positions, however, indicate particular quenching and mediation processes in CO2@He. A series of further resonances in the energy range up to 67 eV can be assigned to electronic excitation of He and capture of the inelastically scattered electron generating (CO2)n(-) and two additional processes where an intermediately formed He* leads to the nonstoichiometric anions (CO2)nO(-).

13.
J Am Soc Mass Spectrom ; 24(5): 744-52, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23483516

RESUMEN

In the present study, dissociative electron attachment (DEA) measurements with gas phase HMX, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, C4H8N8O8, have been performed by means of a crossed electron-molecular beam experiment. The most intense signals are observed at 46 and 176 u and assigned to NO2(-) and C3H6N5O4(-), respectively. Anion efficiency curves for 15 negatively charged fragments have been measured in the electron energy region from about 0-20 eV with an energy resolution of ~0.7 eV. Product anions are observed mainly in the low energy region, near 0 eV, arising from surprisingly complex reactions associated with multiple bond cleavages and structural and electronic rearrangement. The remarkable instability of HMX towards electron attachment with virtually zero kinetic energy reflects the highly explosive nature of this compound. Substantially different intensity ratios of resonances for common fragment anions allow distinguishing the nitroamines HMX and royal demolition explosive molecule (RDX) in negative ion mass spectrometry based on free electron capture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...