Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Genet Mol Biol ; 47(1): e20220335, 2024.
Article En | MEDLINE | ID: mdl-38593426

Massive sequencing platforms allow the identification of complex clinical phenotypes involving more than one autosomal recessive disorder. In this study, we report on an adult patient, born to a related couple (third degree cousins), referred for genetic evaluation due to ectopia lentis, deafness and previous diagnosis of juvenile idiopathic arthritis. He was biochemically diagnosed as having Classic Homocystinuria (HCU); Sanger sequencing of the CBS gene showed the genotype NM_000071.2(CBS):c.[833T>C];[833T>C], compatible with the diagnosis of pyridoxine-responsive HCU. As he also had symptoms not usually associated with HCU, exome sequencing was performed. In addition to the variants found in the Sanger sequencing, the following variants were identified: NM_001256317.1(TMPRSS3):c.[413C>A];[413C>A]; and the NM_005807.6(PRG4):c.[3756dup]:[3756dup], confirming the diagnosis of autosomal recessive nonsyndromic deafness and Camptodactyly-Arthropathy-Coxa Vara-Pericarditis Syndrome (CACP), respectively. Genomic analysis allowed the refinement of the diagnosis of a complex case and improvement of the patient's treatment.

2.
Genet Mol Biol ; 47(1): e20230285, 2024.
Article En | MEDLINE | ID: mdl-38488524

Mucopolysaccharidosis type IIIB (MPS IIIB) is caused by deficiency of alpha-N-acetylglucosaminidase, leading to storage of heparan sulphate. The disease is characterized by intellectual disability and hyperactivity, among other neurological and somatic features. Here we studied retrospective data from a total of 19 MPS IIIB patients from Brazil, aiming to evaluate disease progression. Mean age at diagnosis was 7.2 years. Speech delay was one of the first symptoms to be identified, around 2-3 years of age. Behavioral alterations include hyperactivity and aggressiveness, starting around age four. By the end of the first decade, patients lost acquired abilities such as speech and ability to walk. Furthermore, as disease progresses, respiratory, cardiovascular and joint abnormalities were found in more than 50% of the patients, along with organomegaly. Most common cause of death was respiratory problems. The disease progression was characterized in multiple systems, and hopefully these data will help the design of appropriate clinical trials and clinical management guidelines.

3.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38474117

Gaucher disease (GD, OMIM 230800) is one of the most common lysosomal disorders, being caused by the deficient activity of the enzyme acid ß-glucocerebrosidase (Gcase). Three clinical forms of Gaucher's disease (GD) are classified based on neurological involvement. Type 1 (GD1) is non-neuronopathic, while types 2 (GD2) and 3 (GD3) are neuronopathic forms. Gcase catalyzes the conversion of glucosylceramide (GlcCer) into ceramide and glucose. As GlcCer accumulates in lysosomal macrophages, it undergoes deacylation to become glycosylsphingosine (lyso-Gb1), which has shown to be a useful and reliable biomarker for the diagnosis and monitoring of treated and untreated patients with GD. Multiple myeloma (MM) is one of the leading causes of cancer-related death among patients with GD and monoclonal gammopathy of undetermined significance (MGUS) is a non-neoplastic condition that can be a telltale sign of a B clonal proliferation caused by the chronic activation of B cells. This study aimed to quantify Lyso-Gb1 levels in dried blood spots (DBS) and cerebrospinal fluid (CSF) as biomarkers for Gaucher disease (GD) and discuss the association of this biomarker with other clinical parameters. This is a mixed-methods study incorporating both cross-sectional and longitudinal elements within a cohort design with a convenience-sampling strategy. Data collection took place from January 2012 to March 2023. Lyso-Gb1 extraction from DBS involved the use of a methanol-acetonitrile-water mixture, followed by incubation and centrifugation. Analysis was performed using UPLC-MS/MS with MassLynx software version 4.2 and the control group for the DBS measurements included general newborns. CSF Lyso-Gb1 was extracted using ethyl acetate, analyzed by UPLC-MS/MS with a calibration curve, and expressed in pmol/L. Lysosomal activity in CSF was assessed by measuring chitotriosidase (Cht), and other lysosomal enzyme activities were assessed as previously described in the literature. Patients with metachromatic leukodystrophy (MLD) were used as controls. Thirty-two treated patients (twenty-nine GD1 and three GD3, all on ERT except for one GD type on SRT with eliglustat) and three untreated patients (one GD1, one GD2, and one GD3) were included. When analyzing only the treated GD1 group, a significant correlation was found between lyso-Gb1 and age (rho = -0.447, p = 0.001), ChT, and IgG levels (rho = 0.73, p < 0.001; and rho = 0.36, p = 0.03, respectively). Five GD1 patients (three females, mean age 40 years) also had their CSF collected and analyzed. The average measurement of lyso-Gb1 in CSF was 94 pmol/L (range: 57.1-157.9 pmol/L) versus <6.2 pmol/L in the control group (MLD). This is the first time, to the best of our knowledge, that lyso-Gb1 has been associated with IgG levels. While this finding reflects a risk for MGUS or MM and not only chronic plasma B-cell activation, it still requires further studies. Moreover, the analysis of CSF lyso-Gb1 levels in GD1 patients was demonstrated to be significantly higher than the control group. This raises the hypothesis that CSF lyso-Gb1 may serve as a valuable indicator for neurological involvement in GD, providing insights into the potential implications for neurological manifestations in GD, including GD1. The correlation between lyso-Gb1 and ChT levels in treated GD1 patients further underscores the interconnectedness of lysosomal markers and their relevance in monitoring.


Gaucher Disease , Monoclonal Gammopathy of Undetermined Significance , Psychosine , Adult , Female , Humans , Infant, Newborn , Biomarkers , Brazil , Chromatography, Liquid , Cross-Sectional Studies , Gaucher Disease/diagnosis , Immunoglobulin G/blood , Psychosine/analogs & derivatives , Tandem Mass Spectrometry
4.
J Neuromuscul Dis ; 10(6): 1145-1149, 2023.
Article En | MEDLINE | ID: mdl-37781817

RYR1-related exertional myalgia/rhabdomyolysis (ERM) is an underrecognized condition, which can cause limiting muscle symptoms, and may account for more than one-third of undiagnosed rhabdomyolysis cases. Dantrolene has shown promising results in controlling muscle symptoms in individuals with ERM, however, its use in children remains poorly documented. This case report presents the successful treatment of a 5-year-old patient with ERM using oral dantrolene. The patient experienced notable improvements, including a reduction in the frequency and intensity of myalgia episodes, no hospitalizations due to rhabdomyolysis, a substantial decrease in creatine phosphokinase (CPK) levels, and enhanced performance on the 6-minute walk test. The use of dantrolene was well-tolerated, and no significant adverse effects were observed. This report adds to the existing evidence supporting the effectiveness of oral dantrolene in managing ERM, and, to the best of our knowledge, this is the first report of the use of dantrolene in a pediatric patient for controlling anesthesia-independent muscle symptoms.


Dantrolene , Rhabdomyolysis , Humans , Child , Child, Preschool , Dantrolene/therapeutic use , Myalgia/drug therapy , Myalgia/etiology , Ryanodine Receptor Calcium Release Channel/genetics , Rhabdomyolysis/drug therapy , Rhabdomyolysis/complications , Muscles
5.
Orphanet J Rare Dis ; 18(1): 309, 2023 10 02.
Article En | MEDLINE | ID: mdl-37784132

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Its classic motor symptoms may be preceded by non-motor symptoms (NMS). Population studies have identified GBA variants as risk factors for idiopathic PD. The increased risk of PD has also been suggested in other Lysosomal Storage Disorders (LSDs). OBJECTIVE: To assess the evolution of the prevalence of NMS compatible with PD in a cohort of South Brazilian adult patients with Gaucher Disease (GD) type 1, already evaluated 3 years ago (2018). Cerebrospinal Fluid (CSF) was collected to assess the levels of LSD enzymes (beta-hexosaminidases, beta-glucuronidase) and biomarker of macrophage activation (chitotriosidase, ChT), compared to controls (metachromatic leukodystrophy, MLD). Cognition was evaluated by the Montreal Cognitive Assessment (MoCA) questionnaire, daytime sleepiness by the Epworth Sleepiness Scale (ESS), depression by Beck´s Inventory, constipation by the Unified Multiple System Atrophy Rating Scale (UMSARS) scale, and REM sleep behavior disorder by the single-question screen. Hyposmia was assessed with Sniffin' Sticks (SST). RESULTS: Nineteen patients completed the follow-up (mean age of the sample was 44 years; range, 26-71). The patient with the highest number of NMS at the baseline (4 including the lowest SST score) was diagnosed with PD four years later. Apart from an improvement in the ESS score, no other statistical significance was found between the number of NMS between the first and second evaluation, nor between patients with one L444P variant (n = 5) and the rest of the cohort. CSF was collected in five patients (mean age of the sample was 40 years, range 30-53. A significant difference was found in the mean CSF activity levels of beta-hexosaminidases and beta-glucuronidase between GD1 and MLD patients. Mean ChT (CSF) was 62 nmol/h/mL in GD patients and 142 in MLD (n = 6) patients. CONCLUSIONS: The patient with the highest number of NMS in our 2018 cohort was the one that developed PD, corroborating with the importance of this longitudinal follow-up. CSF and plasma analysis might allow a better understanding of the neurodegenerative processes connecting PD and the lysosomal environment. Further analysis is needed to understand this relationship.


Gaucher Disease , Neurodegenerative Diseases , Parkinson Disease , Humans , Adult , Middle Aged , Parkinson Disease/diagnosis , Follow-Up Studies , Glucuronidase
6.
J Pediatr Hematol Oncol ; 45(7): 416-422, 2023 10 01.
Article En | MEDLINE | ID: mdl-37539993

BACKGROUND: Erythropoietic protoporphyria (EPP) is a rare inherited disease of heme biosynthesis resulting in the accumulation of protoporphyrin, characterized by liver failure in a minority of cases. Although liver transplant (LT) is the therapeutic strategy for advanced hepatic disease, it does not correct the primary defect, which leads to recurrence in liver graft. Thus, hematopoietic stem cell transplantation (HSCT) is an approach for treating EPP. METHODS: We aim to describe the first sequential LT and HSCT for EPP performed in Latin America, besides reviewing the present-day literature. RESULTS: The patient, a 13-year-old female with a history of photosensitivity, presented with symptoms of cholestatic and hepatopulmonary syndrome and was diagnosed with EPP. Liver biopsy demonstrated cirrhosis. She was submitted to a successful LT and showed improvement of respiratory symptoms. However, she had disease recurrence on the liver graft. She underwent a myeloablative HSCT using a matched unrelated donor, conditioning with BuCy (busulfan and cyclophosphamide), and GvHD (graft vs. host disease) prophylaxis with ATG (thymoglobulin), tacrolimus and methotrexate. Neutrophil engraftment occurred on D+18. She has presented mixed chimerism, but normalization of PP levels, being 300 days after HSCT, in good state of health and normal liver function. CONCLUSIONS: Consecutive LT and HSCT for EPP is a procedure that has been described in 10 cases in the literature and, even though these patients are a highly diversified population, studies have shown favorable results. This concept of treatment should be considered in patients with established liver disease.


Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Liver Diseases , Liver Transplantation , Protoporphyria, Erythropoietic , Female , Humans , Adolescent , Bone Marrow Transplantation , Protoporphyria, Erythropoietic/therapy , Protoporphyria, Erythropoietic/pathology , Hematopoietic Stem Cell Transplantation/methods , Liver Transplantation/methods , Transplantation Conditioning
7.
Adv Rheumatol ; 63(1): 23, 2023 05 22.
Article En | MEDLINE | ID: mdl-37217999

INTRODUCTION: The deficiency of ADA2 (DADA2) is a rare autoinflammatory disease provoked by mutations in the ADA2 gene inherited in a recessive fashion. Up to this moment there is no consensus for the treatment of DADA2 and anti-TNF is the therapy of choice for chronic management whereas bone marrow transplantation is considered for refractory or severe phenotypes. Data from Brazil is scarce and this multicentric study reports 18 patients with DADA2 from Brazil. PATIENTS AND METHODS: This is a multicentric study proposed by the Center for Rare and Immunological Disorders of the Hospital 9 de Julho - DASA, São Paulo - Brazil. Patients of any age with a confirmed diagnosis of DADA2 were eligible for this project and data on clinical, laboratory, genetics and treatment were collected. RESULTS: Eighteen patients from 10 different centers are reported here. All patients had disease onset at the pediatric age (median of 5 years) and most of them from the state of São Paulo. Vasculopathy with recurrent stroke was the most common phenotype but atypical phenotypes compatible with ALPS-like and Common Variable Immunodeficiency (CVID) was also found. All patients carried pathogenic mutations in the ADA2 gene. Acute management of vasculitis was not satisfactory with steroids in many patients and all those who used anti-TNF had favorable responses. CONCLUSION: The low number of patients diagnosed with DADA2 in Brazil reinforces the need for disease awareness for this condition. Moreover, the absence of guidelines for diagnosis and management is also necessary (t).


Adenosine Deaminase , Vasculitis , Humans , Adenosine Deaminase/genetics , Brazil , Tumor Necrosis Factor Inhibitors , Intercellular Signaling Peptides and Proteins/genetics
8.
Adv Rheumatol ; 63: 23, 2023. tab, graf
Article En | LILACS-Express | LILACS | ID: biblio-1447160

Abstract Introduction The deficiency of ADA2 (DADA2) is a rare autoinflammatory disease provoked by mutations in the ADA2 gene inherited in a recessive fashion. Up to this moment there is no consensus for the treatment of DADA2 and anti-TNF is the therapy of choice for chronic management whereas bone marrow transplantation is considered for refractory or severe phenotypes. Data from Brazil is scarce and this multicentric study reports 18 patients with DADA2 from Brazil. Patients and methods This is a multicentric study proposed by the Center for Rare and Immunological Disorders of the Hospital 9 de Julho - DASA, São Paulo - Brazil. Patients of any age with a confirmed diagnosis of DADA2 were eligible for this project and data on clinical, laboratory, genetics and treatment were collected. Results Eighteen patients from 10 different centers are reported here. All patients had disease onset at the pediatric age (median of 5 years) and most of them from the state of São Paulo. Vasculopathy with recurrent stroke was the most common phenotype but atypical phenotypes compatible with ALPS-like and Common Variable Immunodeficiency (CVID) was also found. All patients carried pathogenic mutations in the ADA2 gene. Acute management of vasculitis was not satisfactory with steroids in many patients and all those who used anti-TNF had favorable responses. Conclusion The low number of patients diagnosed with DADA2 in Brazil reinforces the need for disease awareness for this condition. Moreover, the absence of guidelines for diagnosis and management is also necessary (t).

9.
Ther Clin Risk Manag ; 18: 1143-1155, 2022.
Article En | MEDLINE | ID: mdl-36578769

Mucopolysaccharidosis VII (MPS VII, Sly syndrome) is an ultra-rare lysosomal disease caused by a deficiency of the enzyme ß-glucuronidase (GUS). The diagnosis is suspected based on a range of symptoms that are common to many other MPS types, and it is confirmed through biochemical and molecular studies. Besides supportive treatment, current and emerging treatments include enzyme replacement therapy, hematopoietic stem cell transplantation, and gene therapy. This review summarizes the clinical manifestations, diagnosis, and emerging treatments for MPS VII.

10.
Ann Rheum Dis ; 81(10): 1453-1464, 2022 10.
Article En | MEDLINE | ID: mdl-35868845

OBJECTIVES: To test the hypothesis that ROSAH (retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis and headache) syndrome, caused by dominant mutation in ALPK1, is an autoinflammatory disease. METHODS: This cohort study systematically evaluated 27 patients with ROSAH syndrome for inflammatory features and investigated the effect of ALPK1 mutations on immune signalling. Clinical, immunologic and radiographical examinations were performed, and 10 patients were empirically initiated on anticytokine therapy and monitored. Exome sequencing was used to identify a new pathogenic variant. Cytokine profiling, transcriptomics, immunoblotting and knock-in mice were used to assess the impact of ALPK1 mutations on protein function and immune signalling. RESULTS: The majority of the cohort carried the p.Thr237Met mutation but we also identified a new ROSAH-associated mutation, p.Tyr254Cys.Nearly all patients exhibited at least one feature consistent with inflammation including recurrent fever, headaches with meningeal enhancement and premature basal ganglia/brainstem mineralisation on MRI, deforming arthritis and AA amyloidosis. However, there was significant phenotypic variation, even within families and some adults lacked functional visual deficits. While anti-TNF and anti-IL-1 therapies suppressed systemic inflammation and improved quality of life, anti-IL-6 (tocilizumab) was the only anticytokine therapy that improved intraocular inflammation (two of two patients).Patients' primary samples and in vitro assays with mutated ALPK1 constructs showed immune activation with increased NF-κB signalling, STAT1 phosphorylation and interferon gene expression signature. Knock-in mice with the Alpk1 T237M mutation exhibited subclinical inflammation.Clinical features not conventionally attributed to inflammation were also common in the cohort and included short dental roots, enamel defects and decreased salivary flow. CONCLUSION: ROSAH syndrome is an autoinflammatory disease caused by gain-of-function mutations in ALPK1 and some features of disease are amenable to immunomodulatory therapy.


Hereditary Autoinflammatory Diseases , NF-kappa B , Protein Kinases/genetics , Amyloidosis , Animals , Cohort Studies , Gain of Function Mutation , Hereditary Autoinflammatory Diseases/genetics , Humans , Inflammation/genetics , Mice , Mutation , NF-kappa B/genetics , NF-kappa B/metabolism , Protein Kinases/metabolism , Quality of Life , Serum Amyloid A Protein , Syndrome , Tumor Necrosis Factor Inhibitors
11.
Metab Brain Dis ; 37(6): 2089-2102, 2022 08.
Article En | MEDLINE | ID: mdl-34797484

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder caused by pathogenic variants in the iduronate-2-sulfatase gene (IDS), responsible for the degradation of glycosaminoglycans (GAGs) heparan and dermatan sulfate. IDS enzyme deficiency results in the accumulation of GAGs within cells and tissues, including the central nervous system (CNS). The progressive neurological outcome in a representative number of MPSII patients (neuronopathic form) involves cognitive impairment, behavioral difficulties, and regression in developmental milestones. In an attempt to dissect part of the influence of axon guidance instability over the cognitive impairment presentation in MPS II, we used brain expression data, network propagation, and clustering algorithm to prioritize in the human interactome a disease module associated with the MPS II context. We identified new candidate genes and pathways that act in focal adhesion, integrin cell surface, laminin interactions, ECM proteoglycans, cytoskeleton, and phagosome that converge into functional mechanisms involved in early neural circuit formation defects and could indicate clues about cognitive impairment in patients with MPSII. Such molecular changes during neurodevelopment may precede the morphological and clinical evidence, emphasizing the importance of an early diagnosis and directing the development of potential drug leads. Furthermore, our data also support previous hypotheses pointing to shared pathogenic mechanisms in some neurodegenerative diseases.


Cognitive Dysfunction , Iduronate Sulfatase , Mucopolysaccharidosis II , Brain/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Glycosaminoglycans/metabolism , Humans , Iduronate Sulfatase/genetics , Iduronate Sulfatase/metabolism , Mucopolysaccharidosis II/genetics
12.
Am J Med Genet C Semin Med Genet ; 187(3): 381-387, 2021 09.
Article En | MEDLINE | ID: mdl-34480410

Latin American geneticists have been contributing to the scientific development of Human and Medical Genetics fields since the early 1950s. In the last decades, as Medical Genetics is moving toward a new era of innovative therapies for previously untreatable conditions, the participation of Latin America in clinical trials is also increasing. This review discusses the particularities regarding funding, regulatory, and ethical aspects of conducting clinical trials for genetic diseases in Latin America, with an especial focus on Brazil, the largest country with the highest number of studies. Although there are still several barriers to overcome, the recent development of orphan drug legislation and policies for rare diseases in many Latin American countries indicates a growing opportunity for the participation of the region in international efforts for the development of new therapies for genetic diseases.


Genetic Diseases, Inborn , Clinical Trials as Topic , Humans , Latin America
13.
Psychiatr Genet ; 31(5): 199-204, 2021 10 01.
Article En | MEDLINE | ID: mdl-34347683

Due to their low frequency and some atypical presentations, inborn errors of metabolism are frequently misdiagnosed or underdiagnosed, which hinders the correct management of these patients. To illustrate that, here we present a patient that, at early school age, had learning disabilities compared to her classmates, especially for writing. She completed basic education in a regular school and was transferred to a secondary school for students with special needs. At 18 years of age, she presented a first psychiatric abrupt outbreak: she spent a month screaming and without sleeping. Behavioral problems then became apparent, especially hyperactivity, destructive and chaotic behavior, anxiety, and auto-aggressivity and hetero-aggressivity. A diagnosis of schizophreniform disorder was established. Clinical genetic evaluation revealed coarse face, macroglossia, coarse thick hair, and mild hepatomegaly, and the hypothesis of mucopolysaccharidosis-III was raised. Laboratory tests indicated high levels of urinary glycosaminoglycans and almost undetectable NAGLU activity, confirming the diagnosis. Sequencing of the NAGLU gene revealed the c.1318G>C (p.Gly440Arg) and c.1834A>G (p.Ser612Gly) mutations.


Mucopolysaccharidosis III/complications , Mucopolysaccharidosis III/diagnosis , Schizophrenia/etiology , Acetylglucosaminidase/genetics , Adolescent , Age of Onset , Female , Glycosaminoglycans/urine , Humans , Mucopolysaccharidosis III/genetics , Mutation
14.
Prog Mol Biol Transl Sci ; 182: 289-325, 2021.
Article En | MEDLINE | ID: mdl-34175045

Lysosomal disorders are a group of heterogenous diseases caused by mutations in genes that encode for lysosomal proteins. With exception of some cases, these disorders still lack both knowledge of disease pathogenesis and specific therapies. In this sense, genome editing arises as a technique that allows both the creation of specific cell lines, animal models and gene therapy protocols for these disorders. Here we explain the main applications of genome editing for lysosomal diseases, with examples based on the literature. The ability to rewrite the genome will be of extreme importance to study and potentially treat these rare disorders.


CRISPR-Cas Systems , Gene Editing , Animals , Genetic Therapy , Genome , Lysosomes
15.
Front Cardiovasc Med ; 8: 801147, 2021.
Article En | MEDLINE | ID: mdl-35097020

Background: Cardiovascular involvement is among the main features of MPS disorders and it is also a significant cause of morbidity and mortality. The range of manifestations includes cardiac valve disease, conduction abnormalities, left ventricular hypertrophy, and coronary artery disease. Here, we assessed the cardiovascular manifestations in a cohort of children and adults with MPS I, II, IV, and VI, as well as the impact of enzyme replacement therapy (ERT) on those manifestations. Methods: We performed a chart review of 53 children and 23 adults with different types of MPS that had performed echocardiograms from January 2000 until October 2018. Standardized Z scores were obtained for heart chamber sizes according to the body surface area. When available, echocardiographic measurements that were performed before ERT and at least 18 months after that date were used for the assessment of pre- and post-treatment parameters. Results: Left side valvular disease was a frequent finding, with mitral and aortic thickening being reported in most patients in all four MPS types. Left atrium dilatation was present in 26% of the patients; 25% had increased relative wall thickness; 28% had pulmonary hypertension. The cardiovascular involvement was, in general, more prevalent and more severe in adults than in children, including conduction disorders (40 vs. 16%), mitral stenosis (26 vs. 6%), aortic stenosis (13 vs. 4%), and systolic dysfunction (observed in only one adult patient). ERT promoted a significant reduction of the left ventricular hypertrophy parameters, but failed to improve valve abnormalities, pulmonary hypertension, and left atrial dilatation. Conclusions: Adult patients with MPS may develop severe cardiovascular involvement, not commonly observed in children, and clinicians should be aware of the need for careful monitoring and timely management of those potentially life-threatening complications. Our results also confirm the impact of long-term ERT on left ventricular hypertrophy and its limitations in reversing other prevalent cardiovascular manifestations.

16.
J Clin Endocrinol Metab ; 106(2): 539-553, 2021 01 23.
Article En | MEDLINE | ID: mdl-33141165

CONTEXT: Genetic variants in SLC16A2, encoding the thyroid hormone transporter MCT8, can cause intellectual and motor disability and abnormal serum thyroid function tests, known as MCT8 deficiency. The C-terminal domain of MCT8 is poorly conserved, which complicates prediction of the deleteriousness of variants in this region. We studied the functional consequences of 5 novel variants within this domain and their relation to the clinical phenotypes. METHODS: We enrolled male subjects with intellectual disability in whom genetic variants were identified in exon 6 of SLC16A2. The impact of identified variants was evaluated in transiently transfected cell lines and patient-derived fibroblasts. RESULTS: Seven individuals from 5 families harbored potentially deleterious variants affecting the C-terminal domain of MCT8. Two boys with clinical features considered atypical for MCT8 deficiency had a missense variant [c.1724A>G;p.(His575Arg) or c.1796A>G;p.(Asn599Ser)] that did not affect MCT8 function in transfected cells or patient-derived fibroblasts, challenging a causal relationship. Two brothers with classical MCT8 deficiency had a truncating c.1695delT;p.(Val566*) variant that completely inactivated MCT8 in vitro. The 3 other boys had relatively less-severe clinical features and harbored frameshift variants that elongate the MCT8 protein [c.1805delT;p.(Leu602HisfsTer680) and c.del1826-1835;p.(Pro609GlnfsTer676)] and retained ~50% residual activity. Additional truncating variants within transmembrane domain 12 were fully inactivating, whereas those within the intracellular C-terminal tail were tolerated. CONCLUSIONS: Variants affecting the intracellular C-terminal tail of MCT8 are likely benign unless they cause frameshifts that elongate the MCT8 protein. These findings provide clinical guidance in the assessment of the pathogenicity of variants within the C-terminal domain of MCT8.


Intellectual Disability/pathology , Monocarboxylic Acid Transporters/genetics , Mutation , Phenotype , Symporters/genetics , Adolescent , Child , Child, Preschool , Female , Humans , Intellectual Disability/genetics , Male , Prognosis
17.
Mol Genet Metab Rep ; 25: 100693, 2020 Dec.
Article En | MEDLINE | ID: mdl-33335839

OBJECTIVE: describe cardiovascular findings from echocardiograms and electrocardiograms in patients with Classic Homocystinuria. METHODS: this retrospective exploratory study evaluated fourteen subjects with Classic Homocystinuria (median age = 27.3 years; male n = 8, B6-non-responsive n = 9 patients), recruited by convenience sampling from patients seen Hospital de Clínicas de Porto Alegre (Brazil), between January 1997 and July 2020. Data on clinical findings, echocardiogram and electrocardiogram were retrieved from medical records. RESULTS: Eight patients presented some abnormalities on echocardiogram (n = 6) or electrocardiogram (n = 5). The most frequent finding was mild tricuspid regurgitation (n = 3), followed by mitral valve prolapse, mild mitral regurgitation, enlarged left atrium and aortic valve sclerosis (n = 2 patients each). Aortic root ectasia was found in one patient. Venous thrombosis was reported in six patients: deep vein thrombosis of lower limbs (n = 3), ischaemic stroke (n = 1), cerebral venous sinus thrombosis (n = 1) and pulmonary vein thrombosis (n = 1). CONCLUSION: mild valvulopathies seen to be common in patients with Classic Homocystinuria, but more studies regarding echocardiogram and electrocardiogram in this population are needed to draw absolute conclusions.

18.
Curr Pharm Des ; 26(40): 5100-5109, 2020.
Article En | MEDLINE | ID: mdl-33138761

BACKGROUND: Mucopolysaccharidosis type II (Hunter syndrome, or MPS II) is an X-linked lysosomal disorder caused by the deficiency of iduronate-2-sulfatase, which leads to the accumulation of glycosaminoglycans (GAGs) in a variety of tissues, resulting in a multisystemic disease that can also impair the central nervous system (CNS). OBJECTIVE: This review focuses on providing the latest information and expert opinion about the therapies available and under development for MPS II. METHODS: We have comprehensively revised the latest studies about hematopoietic stem cell transplantation (HSCT), enzyme replacement therapy (ERT - intravenous, intrathecal, intracerebroventricular, and intravenous with fusion proteins), small molecules, gene therapy/genome editing, and supportive management. RESULTS AND DISCUSSION: Intravenous ERT is a well-established specific therapy, which ameliorates the somatic features but not the CNS manifestations. Intrathecal or intracerebroventricular ERT and intravenous ERT with fusion proteins, presently under development, seem to be able to reduce the levels of GAGs in the CNS and have the potential of reducing the impact of the neurological burden of the disease. Gene therapy and/or genome editing have shown promising results in preclinical studies, bringing hope for a "one-time therapy" soon. Results with HSCT in MPS II are controversial, and small molecules could potentially address some disease manifestations. In addition to the specific therapeutic options, supportive care plays a major role in the management of these patients. CONCLUSION: At this time, the treatment of individuals with MPS II is mainly based on intravenous ERT, whereas HSCT can be a potential alternative in specific cases. In the coming years, several new therapy options that target the neurological phenotype of MPS II should be available.


Iduronate Sulfatase , Mucopolysaccharidosis II , Enzyme Replacement Therapy , Glycosaminoglycans/therapeutic use , Humans , Iduronate Sulfatase/genetics , Iduronate Sulfatase/therapeutic use , Mucopolysaccharidosis II/drug therapy , Mucopolysaccharidosis II/genetics , Phenotype
19.
Front Genet ; 11: 561, 2020.
Article En | MEDLINE | ID: mdl-32625234

In this report, we present a patient with brain alterations and dysmorphic features associated with chromosome duplication seen in 4p16.3 region and chromosomal deletion in a critical region responsible for Cri-du-chat syndrome (CdCS). Chromosomal microarray analysis (CMA) revealed a 41.1 Mb duplication encompassing the band region 4p16.3-p13, and a 14.7 Mb deletion located between the bands 5p15.33 and p15.1. The patient's clinical findings overlap with previously reported cases of chromosome 4p duplication syndrome and CdCS. The patient's symptoms are notably similar to those of CdCS patients as she presented with a weak, high-pitched voice and showed a similar pathogenicity observed in the brain MRI. These contiguous gene syndromes present with distinct clinical manifestations. However, the phenotypic and cytogenetic variability in affected individuals, such as the low frequency and the large genomic regions that can be altered, make it challenging to identify candidate genes that contribute to the pathogenesis of these syndromes. Therefore, systems biology and CMA techniques were used to investigate the extent of chromosome rearrangement on critical regions in our patient's phenotype. We identified the candidate genes PPARGC1A, CTBP1, TRIO, TERT, and CCT5 that are associated with the neuropsychomotor delay, microcephaly, and neurological alterations found in our patient. Through investigating pathways that associate with essential nodes in the protein interaction network, we discovered proteins involved in cellular differentiation and proliferation, as well as proteins involved in the formation and disposition of the cytoskeleton. The combination of our cytogenomic and bioinformatic analysis provided these possible explanations for the unique clinical phenotype, which has not yet been described in scientific literature.

20.
Biomolecules ; 10(8)2020 07 26.
Article En | MEDLINE | ID: mdl-32722587

Precision medicine (PM) is an emerging approach for disease treatment and prevention that accounts for the individual variability in the genes, environment, and lifestyle of each person. Lysosomal diseases (LDs) are a group of genetic metabolic disorders that include approximately 70 monogenic conditions caused by a defect in lysosomal function. LDs may result from primary lysosomal enzyme deficiencies or impairments in membrane-associated proteins, lysosomal enzyme activators, or modifiers that affect lysosomal function. LDs are heterogeneous disorders, and the phenotype of the affected individual depends on the type of substrate and where it accumulates, which may be impacted by the type of genetic change and residual enzymatic activity. LDs are individually rare, with a combined incidence of approximately 1:4000 individuals. Specific therapies are already available for several LDs, and many more are in development. Early identification may enable disease course prediction and a specific intervention, which is very important for clinical outcome. Driven by advances in omics technology, PM aims to provide the most appropriate management for each patient based on the disease susceptibility or treatment response predictions for specific subgroups. In this review, we focused on the emerging diagnostic technologies that may help to optimize the management of each LD patient and the therapeutic options available, as well as in clinical developments that enable customized approaches to be selected for each subject, according to the principles of PM.


Lysosomal Storage Diseases/therapy , Lysosomes/pathology , Animals , Enzyme Replacement Therapy , Genetic Therapy , Humans , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/pathology , Precision Medicine
...