Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Gene ; 816: 146169, 2022 Mar 30.
Article En | MEDLINE | ID: mdl-35026291

Aldo-keto reductase-domain (PF00248) containing proteins (AKRs) are NAD(P)(H)-dependent oxidoreductases of a multigene superfamily that mediate versatile functions in plants ranging from detoxification, metal chelation, potassium ion efflux to specialized metabolism. To uncover the complete repertoire of AKR gene superfamily in plants, a systematic kingdom-wide identification, phylogeny reconstruction, classification and synteny network clustering analyses were performed in this study using 74 diverse plant genomes. Plant AKRs were omnipresent, legitimately classified into 4 groups (based on phylogeny) and 14 subgroups (based on the ≥ 60% of protein sequence identity). Species composition of AKR subgroups highlights their distinct emergence during plant evolution. Loss of AKR subgroups among plants was apparent and that various lineage-, order/family- and species-specific losses were observed. The subgroups IA, IVB and IVF were flourished and diversified well during plant evolution, likely related to the complexity of plant's specialized metabolism and environmental adaptation. About 65% of AKRs were in genomic synteny regions across the plant kingdom and the AKRs relevant to important functions (e.g. vitamin B6 metabolism) were in profoundly conserved angiosperm-wide synteny communities. This study underscores the evolutionary landscape of plant AKRs and provides a comprehensive resource to facilitate the functional characterization of them.


Aldo-Keto Reductases/genetics , Evolution, Molecular , Genes, Plant , Plants/enzymology , Synteny , Aldo-Keto Reductases/classification , Phylogeny , Plants/genetics
2.
Gene ; 778: 145472, 2021 Apr 30.
Article En | MEDLINE | ID: mdl-33549715

Plant type III polyketide synthases (PKSs) are associated with various functions in plant growth, development and defense by providing a multitude of polyketide scaffolds for diverse specialized metabolic pathways (SMPs). To decipher banana PKSs involved in specialized metabolism, genome-wide comparative analyses were conducted with A (Musa acuminata) and B (Musa balbisiana) genomes of banana. Both genomes retained eight chalcone synthases (CHSs), seven curcumin synthases (CURSs), three diketidyl-CoA synthases (DCSs) and one anther specific CHS (ASC). Segmental (42%) and tandem (37%) duplication events majorly flourished the banana PKS family. Six of 19 PKSs of A genome (designated as MaPKSs) showed relatively a higher expression in the root, corm, sheath, leaf and embryogenic cell suspension (ECS) of banana. To determine the defense response of MaPKSs and to highlight their candidacy in various SMPs, expression profiling was conducted by qPCR in ECSs treated with 100/200 µM of jasmonic acid (JA) and salicylic acid (SA) at 24/48 h. Maximum and subordinate expression induction of MaPKSs was apparent respectively against JA and SA treatments. Notably, most MaPKSs achieved their peak expression within 24 h of JA and the total flavonoid content was reached maximum within 24 h of JA/SA elicitations. Considering the homology, phylogeny, and expression levels in each analyzed sample (n = 13), three CHSs, three DCSs along with three CURSs and one ASC were selected as most promising candidates respectively for flavonoids, phenylphenalenones and sporopollenin biosynthesis in banana. Our findings provide a first-line resource to disclose the functions of banana PKSs involved in distinct SMPs.


Gene Expression Profiling/methods , Musa/classification , Polyketide Synthases/genetics , Whole Genome Sequencing/methods , Biopolymers/biosynthesis , Carotenoids , Cyclopentanes/pharmacology , Flavonoids/biosynthesis , Gene Expression Regulation, Plant/drug effects , Genome, Plant , Metabolic Networks and Pathways/drug effects , Musa/genetics , Oxylipins/pharmacology , Phenalenes/metabolism , Phylogeny , Plant Proteins/genetics , Salicylic Acid/pharmacology
3.
Front Plant Sci ; 8: 759, 2017.
Article En | MEDLINE | ID: mdl-28555143

Combined abiotic stress (CAbS) affects the field grown plants simultaneously. The multigenic and quantitative nature of uncontrollable abiotic stresses complicates the process of understanding the stress response by plants. Considering this, we analyzed the CAbS response of C3 model plant, Oryza sativa by meta-analysis. The datasets of commonly expressed genes by drought, salinity, submergence, metal, natural expression, biotic, and abiotic stresses were data mined through publically accessible transcriptomic abiotic stress (AbS) responsive datasets. Of which 1,175, 12,821, and 42,877 genes were commonly expressed in meta differential, individual differential, and unchanged expressions respectively. Highly regulated 100 differentially expressed AbS genes were derived through integrative meta-analysis of expression data (INMEX). Of this 30 genes were identified from AbS gene families through expression atlas that were computationally analyzed for their physicochemical properties. All AbS genes were physically mapped against O. sativa genome. Comparative mapping of these genes demonstrated the orthologous relationship with related C4 panicoid genome. In silico expression analysis of these genes showed differential expression patterns in different developmental tissues. Protein-protein interaction of these genes, represented the complexity of AbS. Computational expression profiling of candidate genes in response to multiple stresses suggested the putative involvement of OS05G0350900, OS02G0612700, OS05G0104200, OS03G0596200, OS12G0225900, OS07G0152000, OS08G0119500, OS06G0594700, and Os01g0393100 in CAbS. These potential candidate genes need to be studied further to decipher their functional roles in AbS dynamics.

...