Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 20904, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463255

RESUMEN

Bacterial communities associated with vegetation-soil interfaces have important roles in terrestrial ecosystems. These bacterial communities, studied almost exclusively in unburnt ecosystems or those affected by rare, high-intensity wildfires, have been understudied in fire-frequented grasslands and savannas. The composition of ground-level bacterial communities was explored in an old-growth pine savanna with a centuries-long management history of prescribed fires every 1-2 years. Using 16S metabarcoding, hypotheses were tested regarding differences in bacterial families of litter and soil surface substrates in patches of ground layer vegetation that were naturally burnt or unburnt during landscape-level prescribed fires. Litter/soil substrates and fire/no fire treatments explained 67.5% of bacterial community variation and differences, driven by relative abundance shifts of specific bacterial families. Fires did not strongly affect plant or soil variables, which were not linked to bacterial community differences. Litter/soil substrates and the naturally patchy frequent fires appear to generate microhabitat heterogeneity in this pine savanna, driving responses of bacterial families. Prescribed fire management may benefit from considering how fire-altered substrate heterogeneity influences and maintains microbial diversity and function, especially in these fiery ecosystems. Frequent, low-intensity fires appear ecologically important in maintaining the diverse microbial foundation that underlie ecosystem processes and services in fire-frequented habitats.


Asunto(s)
Incendios , Pinus , Ecosistema , Pradera , Suelo
2.
ACS Appl Mater Interfaces ; 7(35): 19857-62, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26305370

RESUMEN

Atomic layer deposition (ALD) of silicon nitride (SiNx) is deemed essential for a variety of applications in nanoelectronics, such as gate spacer layers in transistors. In this work an ALD process using bis(tert-butylamino)silane (BTBAS) and N2 plasma was developed and studied. The process exhibited a wide temperature window starting from room temperature up to 500 °C. The material properties and wet-etch rates were investigated as a function of plasma exposure time, plasma pressure, and substrate table temperature. Table temperatures of 300-500 °C yielded a high material quality and a composition close to Si3N4 was obtained at 500 °C (N/Si=1.4±0.1, mass density=2.9±0.1 g/cm3, refractive index=1.96±0.03). Low wet-etch rates of ∼1 nm/min were obtained for films deposited at table temperatures of 400 °C and higher, similar to that achieved in the literature using low-pressure chemical vapor deposition of SiNx at >700 °C. For novel applications requiring significantly lower temperatures, the temperature window from room temperature to 200 °C can be a solution, where relatively high material quality was obtained when operating at low plasma pressures or long plasma exposure times.

3.
Dalton Trans ; (42): 5730-6, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-18941660

RESUMEN

Thin films of tungsten carbonitride have been formed on glass by low-pressure chemical vapour deposition (LP)CVD at 550 degrees C from four closely related precursors: [W(mu-N(t)Bu)(N(t)Bu)Cl(2)(H(2)N(t)Bu)](2), [W(N(t)Bu)(2)Cl(2)(TMEDA)] (TMEDA = N,N,N',N'-tetramethylethylenediamine), [W(N(t)Bu)(2)Cl(2)(py)(2)] (py = pyridine) and [W(N(t)Bu)(2)Cl(N{SiMe(3)}(2))]. The grey mirror-like films were grown with a nitrogen or ammonia bleed gas. In all cases the chlorine content of the deposited films was less than 1 at% and the oxygen content of the films was lower for those grown using ammonia. Surprisingly, the use of ammonia did not significantly change the carbon content of the resulting films. Despite the coordination environment around the metal being essentially the same and the materials having a comparable volatility, some differences in film quality were observed. The films were uniform, adhesive, abrasion resistant, conformal and hard, being resistant to scratching with a steel scalpel. X-Ray powder diffraction patterns of all the films showed the formation of beta-WN(x)C(y). As a comparison the aerosol-assisted chemical vapour deposition (AA)CVD of [W(mu-N(t)Bu)(N(t)Bu)Cl(2)(H(2)N(t)Bu)](2) was investigated and amorphous tungsten carbonitride films were deposited.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA