Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 16(9): e0010779, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36170238

RESUMEN

Amphotericin B is increasingly used in treatment of leishmaniasis. Here, fourteen independent lines of Leishmania mexicana and one L. infantum line were selected for resistance to either amphotericin B or the related polyene antimicrobial, nystatin. Sterol profiling revealed that, in each resistant line, the predominant wild-type sterol, ergosta-5,7,24-trienol, was replaced by other sterol intermediates. Broadly, two different profiles emerged among the resistant lines. Whole genome sequencing then showed that these distinct profiles were due either to mutations in the sterol methyl transferase (C24SMT) gene locus or the sterol C5 desaturase (C5DS) gene. In three lines an additional deletion of the miltefosine transporter gene was found. Differences in sensitivity to amphotericin B were apparent, depending on whether cells were grown in HOMEM, supplemented with foetal bovine serum, or a serum free defined medium (DM). Metabolomic analysis after exposure to AmB showed that a large increase in glucose flux via the pentose phosphate pathway preceded cell death in cells sustained in HOMEM but not DM, indicating the oxidative stress was more significantly induced under HOMEM conditions. Several of the lines were tested for their ability to infect macrophages and replicate as amastigote forms, alongside their ability to establish infections in mice. While several AmB resistant lines showed reduced virulence, at least two lines displayed heightened virulence in mice whilst retaining their resistance phenotype, emphasising the risks of resistance emerging to this critical drug.


Asunto(s)
Antiprotozoarios , Leishmania mexicana , Ratones , Animales , Anfotericina B/farmacología , Leishmania mexicana/metabolismo , Nistatina , Albúmina Sérica Bovina/metabolismo , Esteroles , Estrés Oxidativo , Polienos , Transferasas/metabolismo , Glucosa , Ácido Graso Desaturasas/metabolismo , Antiprotozoarios/farmacología
2.
PLoS Pathog ; 14(3): e1006953, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29554142

RESUMEN

Transketolase (TKT) is part of the non-oxidative branch of the pentose phosphate pathway (PPP). Here we describe the impact of removing this enzyme from the pathogenic protozoan Leishmania mexicana. Whereas the deletion had no obvious effect on cultured promastigote forms of the parasite, the Δtkt cells were not virulent in mice. Δtkt promastigotes were more susceptible to oxidative stress and various leishmanicidal drugs than wild-type, and metabolomics analysis revealed profound changes to metabolism in these cells. In addition to changes consistent with those directly related to the role of TKT in the PPP, central carbon metabolism was substantially decreased, the cells consumed significantly less glucose, flux through glycolysis diminished, and production of the main end products of metabolism was decreased. Only minor changes in RNA abundance from genes encoding enzymes in central carbon metabolism, however, were detected although fructose-1,6-bisphosphate aldolase activity was decreased two-fold in the knock-out cell line. We also showed that the dual localisation of TKT between cytosol and glycosomes is determined by the C-terminus of the enzyme and by engineering different variants of the enzyme we could alter its sub-cellular localisation. However, no effect on the overall flux of glucose was noted irrespective of whether the enzyme was found uniquely in either compartment, or in both.


Asunto(s)
Leishmania mexicana/patogenicidad , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Cutánea/parasitología , Metaboloma , Transcetolasa/metabolismo , Virulencia , Animales , Glucólisis , Estadios del Ciclo de Vida , Metabolómica , Ratones , Ratones Endogámicos BALB C , Monocitos/metabolismo , Monocitos/parasitología , Estrés Oxidativo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Eliminación de Secuencia , Transcetolasa/genética
3.
PLoS Negl Trop Dis ; 11(12): e0006052, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29240765

RESUMEN

Reevaluation of treatment guidelines for Old and New World leishmaniasis is urgently needed on a global basis because treatment failure is an increasing problem. Drug resistance is a fundamental determinant of treatment failure, although other factors also contribute to this phenomenon, including the global HIV/AIDS epidemic with its accompanying impact on the immune system. Pentavalent antimonials have been used successfully worldwide for the treatment of leishmaniasis since the first half of the 20th century, but the last 10 to 20 years have witnessed an increase in clinical resistance, e.g., in North Bihar in India. In this review, we discuss the meaning of "resistance" related to leishmaniasis and discuss its molecular epidemiology, particularly for Leishmania donovani that causes visceral leishmaniasis. We also discuss how resistance can affect drug combination therapies. Molecular mechanisms known to contribute to resistance to antimonials, amphotericin B, and miltefosine are also outlined.


Asunto(s)
Resistencia a Medicamentos , Leishmania/efectos de los fármacos , Leishmania/patogenicidad , Leishmaniasis/tratamiento farmacológico , Anfotericina B/farmacología , Anfotericina B/uso terapéutico , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Quimioterapia Combinada , Humanos , Leishmania/genética , Leishmania donovani/efectos de los fármacos , Leishmania donovani/patogenicidad , Leishmaniasis/inmunología , Leishmaniasis/parasitología , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Epidemiología Molecular , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Fosforilcolina/uso terapéutico , Insuficiencia del Tratamiento
4.
PLoS Negl Trop Dis ; 11(6): e0005649, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28622334

RESUMEN

Amphotericin B has emerged as the therapy of choice for use against the leishmaniases. Administration of the drug in its liposomal formulation as a single injection is being promoted in a campaign to bring the leishmaniases under control. Understanding the risks and mechanisms of resistance is therefore of great importance. Here we select amphotericin B-resistant Leishmania mexicana parasites with relative ease. Metabolomic analysis demonstrated that ergosterol, the sterol known to bind the drug, is prevalent in wild-type cells, but diminished in the resistant line, where alternative sterols become prevalent. This indicates that the resistance phenotype is related to loss of drug binding. Comparing sequences of the parasites' genomes revealed a plethora of single nucleotide polymorphisms that distinguish wild-type and resistant cells, but only one of these was found to be homozygous and associated with a gene encoding an enzyme in the sterol biosynthetic pathway, sterol 14α-demethylase (CYP51). The mutation, N176I, is found outside of the enzyme's active site, consistent with the fact that the resistant line continues to produce the enzyme's product. Expression of wild-type sterol 14α-demethylase in the resistant cells caused reversion to drug sensitivity and a restoration of ergosterol synthesis, showing that the mutation is indeed responsible for resistance. The amphotericin B resistant parasites become hypersensitive to pentamidine and also agents that induce oxidative stress. This work reveals the power of combining polyomics approaches, to discover the mechanism underlying drug resistance as well as offering novel insights into the selection of resistance to amphotericin B itself.


Asunto(s)
Anfotericina B/farmacología , Antiprotozoarios/farmacología , Resistencia a Medicamentos , Leishmania mexicana/efectos de los fármacos , Leishmania mexicana/enzimología , Mutación Missense , Esterol 14-Desmetilasa/genética , Ergosterol/análisis , Prueba de Complementación Genética , Genoma de Protozoos , Leishmania mexicana/química , Metabolómica , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Polimorfismo de Nucleótido Simple , Esterol 14-Desmetilasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA