Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(7): e27900, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38571664

RESUMEN

Cardiovascular (CVD) + Respiratory diseases are recognized as the main cause of death worldwide. Fluctuations in temperature and air pollution have been reported as one of the most important causes of cardiovascular & respiratory diseases. Therefore, in the current study, we assessed the relationship between ambient air temperature and pollution on the number of total emergency hospital admission due to cardiovascular and respiratory conditions in the City of Bojnord, northeastern Iran. The meteorological data, including daily temperature, relative humidity and concentrations of five air pollutants CO, NO2, NOX SO2, and PM10 were obtained from online electronic sensors at the Bojnurd meteorological station from 21th March 2018 to 20th March 2020. Statistical analysis, penalized distributed lag non-linear method was applied using R Software. Also, sensitivity analysis test was calculated by using appropriate application. The results of the study revealed that the effect of higher and lower temperatures was observed immediately from the first day and the second week, respectively. Also result showed with increase and decrease temperature, significantly increased the risk of hospitalization by 36% (RR, 1.36; 95% CI (1), 0.95 to 1.95) and 17% (RR, 1.17; 95% CI (1), 0.88 to 1.55) until the lag 25th day, respectively. Based on the results, increasing temperature significantly increased the hospitalization rate of cardiopulmonary patients, but the effect of cold was not significant on the population as well as age and gender subgroups. Study have also proved that there is no significance correlation between air pollutant and Cardiovascular & respiratory diseases.

2.
Environ Sci Pollut Res Int ; 30(9): 22728-22742, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36306072

RESUMEN

Fresh tobacco or the smoke resulting from waterpipe and cigarette contains large amounts of polycyclic aromatic hydrocarbons (PAHs), which consumption can cause releasing of these contaminants into the indoor air of cigarette and waterpipe cafés. This study was conducted to investigate the urinary concentrations of unmetabolized PAH compounds among the employed workers as well as the customers in waterpipe and cigarette cafés along with its association with oxidative stress factors plus kidney injury biomarkers. For this, 35 staffs and 35 customers in these cafés (as an exposed group (EG)), 20 staffs in non-smoking cafés (as 1st control group (CG-1)), and 20 of the public population (as 2nd control group 2 (CG-2)) were chosen and their urine specimens were collected. The results indicated that there is a significant difference between urinary concentration of Æ©PAHs in the exposed and control groups (P value < 0.05). Also, "type of tobacco" can be considered as an influential and determining factor for the urinary levels of PAHs among the subjects. Considering the contribution of PAHs to the total toxic equivalents, benzo[a]pyrene (BaP), dibenzo[a,h]anthracene (DahA), and fluoranthene (Flrt) with 32.76%, 27.62%, and 18.65% claimed the largest share in waterpipe/cigarette cafés. The results also indicated a positive and significant relationship between some PAHs and oxidative stress biomarkers as well as uKIM-1 (biomarker for assessing and diagnosing glomerular damage) and TIMP-1 (biomarker of stress in primary steps of injury in tubular cell). Thus, it can be expressed that the workers of these smoking cafés are prone to the detrimental health impacts. Accordingly, proper policies and decisions should be taken to limit the activity of these cafés or proper protective strategies should be adopted to protect the health of exposed individuals.


Asunto(s)
Contaminación del Aire Interior , Hidrocarburos Policíclicos Aromáticos , Productos de Tabaco , Fumar en Pipa de Agua , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminación del Aire Interior/análisis , Monitoreo Biológico , Nicotiana , Biomarcadores , Monitoreo del Ambiente/métodos
3.
Environ Monit Assess ; 194(11): 812, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36131102

RESUMEN

Polluted air affects human life and it is crucial to assess air pollutants to inform policy and protect human lives. In this study, we sought to assess the respiratory outcomes associated with PM10, O3, SO2, and NO2 in the Iranian population. The required data, which included concentrations of air pollutants, meteorology, and population size, were obtained from the department of environment and meteorological organizations. The validity of the data was evaluated, and appropriate calculations were conducted on the data to extract the required values and parameters for modeling (using the AirQ2.2.3). This study was conducted in two megacities of Iran (Tabriz and Urmia) with over 2 million population. The annual averages of SO2, NO2, and PM10 concentrations were 9, 73, and 43 µg/m3 in Tabriz and 76, 29, and 76 µg/m3 in Urmia, respectively. Excess deaths from respiratory diseases associated with PM10 and SO2 were estimated to be 33.1 and 1.2 cases in Tabriz and 31.6 and 24.7 cases in Urmia, respectively. The proportions of hospitalizations for chronic obstructive pulmonary disease (COPD) attributable to SO2 and NO2 in Tabriz were 0.07% and 1.61%, respectively, whereas they were 2.84% and 0.48% in Urmia. O3 had an annual average of 56 µg/m3 in Tabriz and with 44.5 excess respiratory deaths and 42.5 excess hospital admissions for COPD, it had the greatest health impacts among the pollutants studied. Findings from this study add to the growing literature, especially from developing countries, that provides insights to help authorities and decision-makers develop and implement effective interventions to curb air pollution and save lives.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Enfermedad Pulmonar Obstructiva Crónica , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Humanos , Irán/epidemiología , Dióxido de Nitrógeno/análisis , Evaluación de Resultado en la Atención de Salud , Material Particulado/análisis , Enfermedad Pulmonar Obstructiva Crónica/epidemiología
4.
Environ Sci Pollut Res Int ; 29(4): 5194-5206, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34417700

RESUMEN

Water contamination due to release of dye containing effluents is one of the environmental problems of serious concern today. The present study investigate the green synthesis of zinc oxide nanoparticles (ZnO-NPs) doped on activated carbon (AC) prepared from walnut peel extract and to estimate its efficiency in the removal of Eosin Y (Eo-Y) and Erythrosine B (Er-B) from its aqueous solution. The synthesized AC-ZnO was identified by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and the Brunauer-Emmett-Teller. The influence of various parameters such as pH, dosage of AC-ZnO, contact time, and concentrations of Eo-Y and Er-B was also studied. The pH 3 was observed as the optimum pH while the equilibrium was noticed to reach in 30 min at dosage of 1 g/L and initial concentration 100 mg/L for Eo-Y and Er-B adsorption onto AC-ZnO. The maximum adsorption capacity of Eo-Y and Er-B onto AC-ZnO was found to be 163.9 and 144.92 mg/g (and removal efficiencies of 95.11 and 98.31 %), respectively. The process of Eo-Y and Er-B adsorption on AC-ZnO was observed to be depended on the pseudo-second-order kinetic model which indicates chemisorption processes. Langmuir adsorption isotherm model test described the removal of Eo-Y and Er-B on AC-ZnO. The thermodynamic data indicated that the adsorption was endothermic process. Also, the values, SBET and VTOTAL, for the AC-ZnO were equal to 725.65 m2/g and 0.6004 cm3/g, respectively. The results of this study exhibited that AC-ZnO was a very effective method that can be used for the removal of Eo-Y and Er-B from aqueous solutions.


Asunto(s)
Juglans , Nanopartículas , Contaminantes Químicos del Agua , Óxido de Zinc , Adsorción , Carbón Orgánico , Colorantes , Eosina Amarillenta-(YS) , Eritrosina , Concentración de Iones de Hidrógeno , Cinética , Extractos Vegetales , Termodinámica , Agua , Contaminantes Químicos del Agua/análisis
5.
Chemosphere ; 287(Pt 1): 132114, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34481171

RESUMEN

The adsorption techniques are extensively used in dyes, metronidazole, aniline, wastewater treatment methods to remove certain pollutants. Furfural is organic in nature, considered a pollutant having a toxic effect on humans and their environment and especially aquatic species. Due to distinct characteristics of the adsorption technique, this technique can be utilized to adsorb furfural efficiently. As an environmentally friendly technique, the pomegranate peel was used to synthesized activated carbon and nanostructure of zerovalent iron impregnated on the synthesized activated carbon. The physicochemical and crystallinity characterization was done using Fourier transmission infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and Field emission scanning electron microscopy (FESEM). The nanoparticles are porous in structure having 821.74 m2/g specified surface area. The maximum amount of the adsorbent pores in the range of 3.08 nm shows the microporous structure and enhancement in adsorption capacity. The effects of increment in concentration of adsorbent, pH, reaction contact time and adsorbent dose, isothermal and kinetic behaviour were investigated. At the UV wavelength of 227 nm furfural adsorption was detected. The separation of the furfural from the aqueous solution was calculated at the 1 h reaction time at the composite dosage of 4 g/L, 250 mg/L adsorbent concentration and pH kept at 7. The 81.87% is the maximum removal attained by the nanocomposite in comparison to the activated carbon is 62.06%. Furfural adsorption was also analyzed by using the equations of isothermal and kinetics models. The adsorption process analysis depends on the Freundlich isotherm and Intra-particle diffusion than the other models. The maximum adsorbent of the composite was determined by the Langmuir model which is 222.22 mg/g. The furfural removal enhances as the adsorbent dose enhances. The developed zerovalent iron nanoparticles incorporated on activated carbon (AC/nZVI) from pomegranate peel extract are feasible as an efficient and inexpensive adsorbent to eliminate furfural from a liquid solution.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Furaldehído , Humanos , Hierro , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Pollut Res Int ; 27(29): 36732-36743, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32564327

RESUMEN

In present research, the activated carbon was prepared by a green approach from pomegranate peel coated with zero-valent iron nanoparticles (AC-nZVI) and developed as adsorbent for the removal of amoxicillin from aqueous solution. The physicochemical properties of the AC-nZVI were investigated using XRD, FTIR, and FESEM techniques. The optimal values of the parameters for the best efficiency (97.9%) were amoxicillin concentration of 10 mg/L, adsorbent dose of 1.5 g/L, time of 30 min, and pH of 5, respectively. The adsorption equilibrium and kinetic data were fitted with the Langmuir monolayer isotherm model (qmax 40.282 mg/g, R2 0. 0.999) and pseudo-first order kinetics (R2 0.961). The reusability of the adsorbent also revealed that the adsorption efficiency decreased from 83.54 to 50.79% after five consecutive repetitions. Overall, taking into account the excellent efficiency, availability, environmental friendliness, and good regeneration, AC-nZVI can be introduced as a promising absorbent for amoxicillin from aquatic environments.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua/análisis , Purificación del Agua , Adsorción , Amoxicilina , Carbón Orgánico , Hierro , Cinética , Granada (Fruta) , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA