Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 179, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167814

RESUMEN

Allopatric speciation has been difficult to examine among microorganisms, with prior reports of endemism restricted to sub-genus level taxa. Previous microbial community analysis via 16S rRNA gene sequencing of 925 geothermal springs from the Taupo Volcanic Zone (TVZ), Aotearoa-New Zealand, revealed widespread distribution and abundance of a single bacterial genus across 686 of these ecosystems (pH 1.2-9.6 and 17.4-99.8 °C). Here, we present evidence to suggest that this genus, Venenivibrio (phylum Aquificota), is endemic to Aotearoa-New Zealand. A specific environmental niche that increases habitat isolation was identified, with maximal read abundance of Venenivibrio occurring at pH 4-6, 50-70 °C, and low oxidation-reduction potentials. This was further highlighted by genomic and culture-based analyses of the only characterised species for the genus, Venenivibrio stagnispumantis CP.B2T, which confirmed a chemolithoautotrophic metabolism dependent on hydrogen oxidation. While similarity between Venenivibrio populations illustrated that dispersal is not limited across the TVZ, extensive amplicon, metagenomic, and phylogenomic analyses of global microbial communities from DNA sequence databases indicates Venenivibrio is geographically restricted to the Aotearoa-New Zealand archipelago. We conclude that geographic isolation, complemented by physicochemical constraints, has resulted in the establishment of an endemic bacterial genus.


Asunto(s)
Microbiota , Nueva Zelanda , ARN Ribosómico 16S/genética , Filogenia , Metagenoma
2.
Front Microbiol ; 14: 1094311, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37020721

RESUMEN

Microbial biogeography studies, in particular for geothermal-associated habitats, have focused on spatial patterns and/or individual sites, which have limited ability to describe the dynamics of ecosystem behaviour. Here, we report the first comprehensive temporal study of bacterial and archaeal communities from an extensive range of geothermal features in Aotearoa-New Zealand. One hundred and fifteen water column samples from 31 geothermal ecosystems were taken over a 34-month period to ascertain microbial community stability (control sites), community response to both natural and anthropogenic disturbances in the local environment (disturbed sites) and temporal variation in spring diversity across different pH values (pH 3, 5, 7, 9) all at a similar temperature of 60-70°C (pH sites). Identical methodologies were employed to measure microbial diversity via 16S rRNA gene amplicon sequencing, along with 44 physicochemical parameters from each feature, to ensure confidence in comparing samples across timeframes. Our results indicated temperature and associated groundwater physicochemistry were the most likely parameters to vary stochastically in these geothermal features, with community abundances rather than composition more readily affected by a changing environment. However, variation in pH (pH ±1) had a more significant effect on community structure than temperature (±20°C), with alpha diversity failing to adequately measure temporal microbial disparity in geothermal features outside of circumneutral conditions. While a substantial physicochemical disturbance was required to shift community structures at the phylum level, geothermal ecosystems were resilient at this broad taxonomic rank and returned to a pre-disturbed state if environmental conditions re-established. These findings highlight the diverse controls between different microbial communities within the same habitat-type, expanding our understanding of temporal dynamics in extreme ecosystems.

3.
Microbiol Resour Announc ; 12(2): e0107422, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36695581

RESUMEN

Venenivibrio stagnispumantis strain CP.B2T is a thermophilic, chemolithoautotrophic bacterium from the family Hydrogenothermaceae (phylum Aquificota), isolated from Champagne Pool in the Waiotapu geothermal field, Aotearoa-New Zealand. The genome consists of 1.73 Mbp in 451 contigs with a 30.8 mol% G+C content.

4.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32414793

RESUMEN

Geothermal systems emit substantial amounts of aqueous, gaseous, and methylated mercury, but little is known about microbial influences on mercury speciation. Here, we report results from genome-resolved metagenomics and mercury speciation analysis of acidic warm springs in the Ngawha Geothermal Field (<55°C, pH <4.5), Northland Region, Aotearoa New Zealand. Our aim was to identify the microorganisms genetically equipped for mercury methylation, demethylation, or Hg(II) reduction to volatile Hg(0) in these springs. Dissolved total and methylated mercury concentrations in two adjacent springs with different mercury speciation ranked among the highest reported from natural sources (250 to 16,000 ng liter-1 and 0.5 to 13.9 ng liter-1, respectively). Total solid mercury concentrations in spring sediments ranged from 1,274 to 7,000 µg g-1 In the context of such ultrahigh mercury levels, the geothermal microbiome was unexpectedly diverse and dominated by acidophilic and mesophilic sulfur- and iron-cycling bacteria, mercury- and arsenic-resistant bacteria, and thermophilic and acidophilic archaea. By integrating microbiome structure and metagenomic potential with geochemical constraints, we constructed a conceptual model for biogeochemical mercury cycling in geothermal springs. The model includes abiotic and biotic controls on mercury speciation and illustrates how geothermal mercury cycling may couple to microbial community dynamics and sulfur and iron biogeochemistry.IMPORTANCE Little is currently known about biogeochemical mercury cycling in geothermal systems. The manuscript presents a new conceptual model, supported by genome-resolved metagenomic analysis and detailed geochemical measurements. The model illustrates environmental factors that influence mercury cycling in acidic springs, including transitions between solid (mineral) and aqueous phases of mercury, as well as the interconnections among mercury, sulfur, and iron cycles. This work provides a framework for studying natural geothermal mercury emissions globally. Specifically, our findings have implications for mercury speciation in wastewaters from geothermal power plants and the potential environmental impacts of microbially and abiotically formed mercury species, particularly where they are mobilized in spring waters that mix with surface or groundwaters. Furthermore, in the context of thermophilic origins for microbial mercury volatilization, this report yields new insights into how such processes may have evolved alongside microbial mercury methylation/demethylation and the environmental constraints imposed by the geochemistry and mineralogy of geothermal systems.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Manantiales de Aguas Termales/microbiología , Mercurio/química , Metagenoma , Archaea/genética , Bacterias/genética , Mercurio/metabolismo , Metagenómica , Nueva Zelanda
5.
Chem Sci ; 9(37): 7311-7317, 2018 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-30294420

RESUMEN

Genome mining of the New Zealand extremophilic microorganism Thermogemmatispora strain T81 indicated the presence of biosynthetic machinery to produce several different peptidic natural products. Solid-phase culture of T81 led to the isolation of tikitericin 1, a new lanthipeptide characterised by four (methyl)lanthionine bridges. The mass-guided isolation and structural elucidation of tikitericin 1 is described together with its total synthesis via Fmoc-solid-phase peptide synthesis (SPPS). The key non-canonical (methyl)lanthionine residues were synthesised in solution phase via an improved synthetic route and subsequently assembled to construct the peptide backbone using Fmoc-SPPS. N-Terminal truncated analogues of tikitericin (2-5) were also prepared in order to evaluate the contribution of each sequential ring of the polycyclic lanthipeptide to the antibacterial activity.

6.
FEMS Microbiol Ecol ; 94(11)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30124835

RESUMEN

Green-coloured sediments in low-temperature geothermal surface features are typically indicative of photosynthetic activity. A near-boiling (89-93°C), alkali-chloride spring in the Taupo Volcanic Zone, New Zealand, was observed to have dark green sediments despite being too hot to support any known photosynthetic organisms. Analysis of aqueous and sediment microbial communities via 16S rRNA amplicon sequencing revealed them to be dominated by Aquifex spp., a genus of known hyperthermophilic hydrogen-oxidisers (69%-91% of operational taxonomic units (OTUs)), followed by groups within the Crenarchaeota (3%-20%), including the known iron-reducing genus Pyrobaculum. Cultivation experiments suggest that the green colouration of clay sediments in this spring may be due in part to ferruginous clays and associated compounds serving as substrates for the iron-reducing activity of low-abundance Pyrobaculum spp. These findings demonstrate the dynamic nature of microbe-mineral interactions in geothermal environments, and the potential ability of the rarer biosphere (1%-2% of observed sequences, cell densities of 450-33 000 g-1 sediment) to influence mineral formation at a macro-scale.


Asunto(s)
Arcilla , Sedimentos Geológicos/microbiología , Manantiales de Aguas Termales/microbiología , Hierro/metabolismo , Pyrobaculum/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Crenarchaeota/clasificación , Crenarchaeota/genética , Crenarchaeota/aislamiento & purificación , Sedimentos Geológicos/química , Microbiota , Nueva Zelanda , Filogenia , Pyrobaculum/aislamiento & purificación , ARN Ribosómico 16S/genética
7.
Nat Commun ; 9(1): 2876, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-30038374

RESUMEN

Geothermal springs are model ecosystems to investigate microbial biogeography as they represent discrete, relatively homogenous habitats, are distributed across multiple geographical scales, span broad geochemical gradients, and have reduced metazoan interactions. Here, we report the largest known consolidated study of geothermal ecosystems to determine factors that influence biogeographical patterns. We measured bacterial and archaeal community composition, 46 physicochemical parameters, and metadata from 925 geothermal springs across New Zealand (13.9-100.6 °C and pH < 1-9.7). We determined that diversity is primarily influenced by pH at temperatures <70 °C; with temperature only having a significant effect for values >70 °C. Further, community dissimilarity increases with geographic distance, with niche selection driving assembly at a localised scale. Surprisingly, two genera (Venenivibrio and Acidithiobacillus) dominated in both average relative abundance (11.2% and 11.1%, respectively) and prevalence (74.2% and 62.9%, respectively). These findings provide an unprecedented insight into ecological behaviour in geothermal springs, and a foundation to improve the characterisation of microbial biogeographical processes.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Ecosistema , Manantiales de Aguas Termales/microbiología , Archaea/genética , Bacterias/genética , Clasificación , Geografía , Calor , Concentración de Iones de Hidrógeno , Microbiota , Nueva Zelanda , Prevalencia , Análisis de Secuencia de ADN
8.
ISME J ; 12(8): 1918-1928, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29662145

RESUMEN

Decades of research into the Bacteria and Archaea living in geothermal spring ecosystems have yielded great insight into the diversity of life and organismal adaptations to extreme environmental conditions. Surprisingly, while microbial eukaryotes (protists) are also ubiquitous in many environments, their diversity across geothermal springs has mostly been ignored. We used high-throughput sequencing to illuminate the diversity and structure of microbial eukaryotic communities found in 160 geothermal springs with broad ranges in temperature and pH across the Taupo Volcanic Zone in New Zealand. Protistan communities were moderately predictable in composition and varied most strongly across gradients in pH and temperature. Moreover, this variation mirrored patterns observed for bacterial and archaeal communities across the same spring samples, highlighting that there are similar ecological constraints across the tree of life. While extreme pH values were associated with declining protist diversity, high temperature springs harbored substantial amounts of protist diversity. Although protists are often overlooked in geothermal springs and other extreme environments, our results indicate that such environments can host distinct and diverse protistan communities.


Asunto(s)
Eucariontes/aislamiento & purificación , Manantiales de Aguas Termales , Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Biodiversidad , Fenómenos Ecológicos y Ambientales , Eucariontes/clasificación , Eucariontes/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Manantiales de Aguas Termales/microbiología , Concentración de Iones de Hidrógeno , Nueva Zelanda , Temperatura
9.
ISME J ; 11(11): 2599-2610, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28777381

RESUMEN

Aerobic methanotrophic bacteria have evolved a specialist lifestyle dependent on consumption of methane and other short-chain carbon compounds. However, their apparent substrate specialism runs contrary to the high relative abundance of these microorganisms in dynamic environments, where the availability of methane and oxygen fluctuates. In this work, we provide in situ and ex situ evidence that verrucomicrobial methanotrophs are mixotrophs. Verrucomicrobia-dominated soil communities from an acidic geothermal field in Rotokawa, New Zealand rapidly oxidised methane and hydrogen simultaneously. We isolated and characterised a verrucomicrobial strain from these soils, Methylacidiphilum sp. RTK17.1, and showed that it constitutively oxidises molecular hydrogen. Genomic analysis confirmed that this strain encoded two [NiFe]-hydrogenases (group 1d and 3b), and biochemical assays revealed that it used hydrogen as an electron donor for aerobic respiration and carbon fixation. While the strain could grow heterotrophically on methane or autotrophically on hydrogen, it grew optimally by combining these metabolic strategies. Hydrogen oxidation was particularly important for adaptation to methane and oxygen limitation. Complementary to recent findings of hydrogenotrophic growth by Methylacidiphilum fumariolicum SolV, our findings illustrate that verrucomicrobial methanotrophs have evolved to simultaneously utilise hydrogen and methane from geothermal sources to meet energy and carbon demands where nutrient flux is dynamic. This mixotrophic lifestyle is likely to have facilitated expansion of the niche space occupied by these microorganisms, allowing them to become dominant in geothermally influenced surface soils. Genes encoding putative oxygen-tolerant uptake [NiFe]-hydrogenases were identified in all publicly available methanotroph genomes, suggesting hydrogen oxidation is a general metabolic strategy in this guild.


Asunto(s)
Metano/metabolismo , Microbiología del Suelo , Verrucomicrobia/metabolismo , Procesos Autotróficos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genómica , Hidrogenasas/genética , Hidrogenasas/metabolismo , Nueva Zelanda , Oxidación-Reducción , Oxígeno/metabolismo , Filogenia , Suelo/química , Verrucomicrobia/clasificación , Verrucomicrobia/genética , Verrucomicrobia/aislamiento & purificación
10.
ISME J ; 11(5): 1158-1167, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28072418

RESUMEN

Understanding how microbial communities respond and adjust to ecosystem perturbation is often difficult to interpret due to multiple and often simultaneous variations in observed conditions. In this research, we investigated the microbial community dynamics of Inferno Crater Lake, an acidic geothermal spring in New Zealand with a unique thermal cycle that varies between 30 and 80 °C over a period of 40-60 days. Using a combination of next-generation sequencing, geochemical analysis and quantitative PCR we found that the microbial community composition was predominantly chemolithotrophic and strongly associated with the thermal cycle. At temperatures >65 °C, the microbial community was dominated almost exclusively by sulphur-oxidising archaea (Sulfolobus-like spp.). By contrast, at mesophilic temperatures the community structure was more mixed, comprising both archaea and bacteria but dominated primarily by chemolithotrophic sulphur and hydrogen oxidisers. Multivariate analysis of physicochemical data confirmed that temperature was the only significant variable associated with community turnover. This research contributes to our understanding of microbial community dynamics in variable environments, using a naturally alternating system as a model and extends our limited knowledge of acidophile ecology in geothermal habitats.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Manantiales de Aguas Termales/microbiología , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , Crecimiento Quimioautotrófico , Ecosistema , Calor , Lagos/microbiología , Nueva Zelanda , ARN Ribosómico 16S/genética , Azufre/metabolismo , Temperatura
11.
Stand Genomic Sci ; 10: 101, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26568784

RESUMEN

Strain K22(T) is the type species of the recently- described genus Pyrinomonas, in subdivision 4 of the phylum Acidobacteria (Int J Syst Evol Micr. 2014; 64(1):220-7). It was isolated from geothermally-heated soil from Mt. Ngauruhoe, New Zealand, using low-nutrient medium. P. methylaliphatogenes K22(T) has a chemoheterotrophic metabolism; it can hydrolyze a limited range of simple carbohydrates and polypeptides. Its cell membrane is dominated by iso-branching fatty acids, and up to 40 % of its lipid content is membrane-spanning and ether lipids. It is obligately aerobic, thermophilic, moderately acidophilic, and non-spore-forming. The 3,788,560 bp genome of P. methylaliphatogenes K22(T) has a G + C content of 59.36 % and contains 3,189 protein-encoding and 55 non-coding RNA genes. Genomic analysis was consistent with nutritional requirements; in particular, the identified transporter classes reflect the oligotrophic nature of this strain.

12.
Int J Syst Evol Microbiol ; 65(12): 4479-4487, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26374291

RESUMEN

An aerobic, thermophilic and cellulolytic bacterium, designated strain WKT50.2T, was isolated from geothermal soil at Waikite, New Zealand. Strain WKT50.2T grew at 53-76 °C and at pH 5.9-8.2. The DNA G+C content was 58.4 mol%. The major fatty acids were 12-methyl C18 : 0 and C18 : 0. Polar lipids were all linked to long-chain 1,2-diols, and comprised 2-acylalkyldiol-1-O-phosphoinositol (diolPI), 2-acylalkyldiol-1-O-phosphoacylmannoside (diolP-acylMan), 2-acylalkyldiol-1-O-phosphoinositol acylmannoside (diolPI-acylMan) and 2-acylalkyldiol-1-O-phosphoinositol mannoside (diolPI-Man). Strain WKT50.2T utilized a range of cellulosic substrates, alcohols and organic acids for growth, but was unable to utilize monosaccharides. Robust growth of WKT50.2T was observed on protein derivatives. WKT50.2T was sensitive to ampicillin, chloramphenicol, kanamycin, neomycin, polymyxin B, streptomycin and vancomycin. Metronidazole, lasalocid A and trimethoprim stimulated growth. Phylogenetic analysis of 16S rRNA gene sequences showed that WKT50.2T belonged to the class Thermomicrobia within the phylum Chloroflexi, and was most closely related to Thermorudis peleae KI4T (99.6% similarity). DNA-DNA hybridization between WKT50.2T and Thermorudis peleae DSM 27169T was 18.0%. Physiological and biochemical tests confirmed the phenotypic and genotypic differentiation of strain WKT50.2T from Thermorudis peleae KI4T and other members of the Thermomicrobia. On the basis of its phylogenetic position and phenotypic characteristics, we propose that strain WKT50.2T represents a novel species, for which the name Thermorudis pharmacophila sp. nov. is proposed, with the type strain WKT50.2T ( = DSM 26011T = ICMP 20042T). Emended descriptions of Thermomicrobium roseum, Thermomicrobium carboxidum, Thermorudis peleae and Sphaerobacter thermophilus are also proposed, and include the description of a novel respiratory quinone, MK-8 2,3-epoxide (23%), in Thermomicrobium roseum.


Asunto(s)
Chloroflexi/clasificación , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , Chloroflexi/genética , Chloroflexi/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Manantiales de Aguas Termales , Calor , Datos de Secuencia Molecular , Nueva Zelanda , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
13.
Int J Syst Evol Microbiol ; 65(Pt 4): 1114-1121, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25575826

RESUMEN

A novel bacterial strain, NGM72.4(T), was isolated from a hot spring in the Ngatamariki geothermal field, New Zealand. Phylogenetic analysis based on 16S rRNA gene sequences grouped it into the phylum Verrucomicrobia and class level group 3 (also known as OPB35 soil group). NGM72.4(T) stained Gram-negative, and was catalase- and oxidase-positive. Cells were small cocci, 0.5-0.8 µm in diameter, which were motile by means of single flagella. Transmission electron micrograph (TEM) imaging showed an unusual pirellulosome-like intracytoplasmic membrane. The peptidoglycan content was very small with only trace levels of diaminopimelic acid detected. No peptidoglycan structure was visible in TEM imaging. The predominant isoprenoid quinone was MK-7 (92%). The major fatty acids (>15%) were C(16 : 0), anteiso-C(15 : 0), iso-C(16 : 0) and anteiso-C(17 : 0). Major phospholipids were phosphatidylethanolamine (PE), phosphatidylmonomethylethanolamine (PMME) and cardiolipin (CL), and a novel analogous series of phospholipids where diacylglycerol was replaced with diacylserinol (sPE, sPMME, sCL). The DNA G+C content was 65.6 mol%. Cells displayed an oxidative chemoheterotrophic metabolism. NGM72.4(T) is a strictly aerobic thermophile (growth optimum 60-65 °C), has a slightly alkaliphilic pH growth optimum (optimum pH 8.1-8.4) and has a NaCl tolerance of up to 8 g l(-1). Colonies were small, circular and pigmented pale pink. The distinct phylogenetic position and phenotypic traits of strain NGM72.4(T) distinguish it from all other described species of the phylum Verrucomicrobia and, therefore, it is considered to represent a novel species in a new genus for which we propose the name Limisphaera ngatamarikiensis gen. nov., sp. nov. The type strain is NGM72.4(T) ( = ICMP 20182(T) = DSM 27329(T)).


Asunto(s)
Manantiales de Aguas Termales/microbiología , Filogenia , Verrucomicrobia/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Datos de Secuencia Molecular , Nueva Zelanda , Peptidoglicano/química , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Verrucomicrobia/genética , Verrucomicrobia/aislamiento & purificación , Vitamina K 2/análogos & derivados , Vitamina K 2/química
14.
Int J Syst Evol Microbiol ; 64(Pt 4): 1264-1270, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24425740

RESUMEN

A strictly aerobic, thermophilic, moderately acidophilic, non-spore-forming bacterium, strain P373(T), was isolated from geothermally heated soil at Waikite, New Zealand. Cells were filamentous rods, 0.2-0.4 µm in diameter and grew in chains up to 80 µm in length. On the basis of 16S rRNA gene sequence similarity, strain P373(T) was shown to belong to the family Chitinophagaceae (class Sphingobacteriia) of the phylum Bacteroidetes, with the most closely related cultivated strain, Chitinophaga pinensis UQM 2034(T), having 87.6 % sequence similarity. Cells stained Gram-negative, and were catalase- and oxidase-positive. The major fatty acids were i-15 : 0 (10.8 %), i-17 : 0 (24.5 %) and i-17 : 0 3-OH (35.2 %). Primary lipids were phosphatidylethanolamine, two unidentified aminolipids and three other unidentified polar lipids. The presence of sulfonolipids (N-acyl-capnines) was observed in the total lipid extract by mass spectrometry. The G+C content of the genomic DNA was 47.3 mol% and the primary respiratory quinone was MK-7. Strain P373(T) grew at 35-63 °C with an optimum temperature of 60 °C, and at pH 5.5-8.7 with an optimum growth pH of 7.3-7.4. NaCl tolerance was up to 5 % (w/v) with an optimum of 0.1-0.25 % (w/v). Cell colonies were non-translucent and pigmented vivid yellow-orange. Cells displayed an oxidative chemoheterotrophic metabolism. The distinct phylogenetic position and the phenotypic characteristics separate strain P373(T) from all other members of the phylum Bacteroidetes and indicate that it represents a novel species in a new genus, for which the name Thermoflavifilum aggregans gen. nov., sp. nov. is proposed. The type strain of the type species is P373(T) ( = ICMP 20041(T) = DSM 27268(T)).


Asunto(s)
Bacteroidetes/clasificación , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Calor , Datos de Secuencia Molecular , Nueva Zelanda , Fosfatidiletanolaminas/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...