Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Phys Rev Lett ; 131(8): 080201, 2023 Aug 25.
Article En | MEDLINE | ID: mdl-37683164

Which nonlocal correlations can be obtained, when a party has access to more than one subsystem? While traditionally nonlocality deals with spacelike separated parties, this question becomes important with quantum technologies that connect devices by means of small shared systems. Here, we study Bell inequalities where measurements of different parties can have overlap. This allows us to accommodate problems in quantum information such as the existence of quantum error correction codes in the framework of nonlocality. The scenarios considered show an interesting behavior with respect to Hilbert space dimension, overlap, and symmetry.

2.
Phys Rev Lett ; 130(19): 190201, 2023 May 12.
Article En | MEDLINE | ID: mdl-37243635

Nonlocality arising in networks composed of several independent sources gives rise to phenomena radically different from that in standard Bell scenarios. Over the years, the phenomenon of network nonlocality in the entanglement-swapping scenario has been well investigated and demonstrated. However, it is known that violations of the so-called bilocality inequality used in previous experimental demonstrations cannot be used to certify the nonclassicality of their sources. This has put forward a stronger concept for nonlocality in networks, called full network nonlocality. Here, we experimentally observe full network nonlocal correlations in a network where the source-independence, locality, and measurement-independence loopholes are closed. This is ensured by employing two independent sources, rapid setting generation, and spacelike separations of relevant events. Our experiment violates known inequalities characterizing nonfull network nonlocal correlations by over 5 standard deviations, certifying the absence of classical sources in the realization.

3.
Nat Commun ; 14(1): 2153, 2023 Apr 14.
Article En | MEDLINE | ID: mdl-37059704

Networks composed of independent sources of entangled particles that connect distant users are a rapidly developing quantum technology and an increasingly promising test-bed for fundamental physics. Here we address the certification of their post-classical properties through demonstrations of full network nonlocality. Full network nonlocality goes beyond standard nonlocality in networks by falsifying any model in which at least one source is classical, even if all the other sources are limited only by the no-signaling principle. We report on the observation of full network nonlocality in a star-shaped network featuring three independent sources of photonic qubits and joint three-qubit entanglement-swapping measurements. Our results demonstrate that experimental observation of full network nonlocality beyond the bilocal scenario is possible with current technology.

4.
Phys Rev Lett ; 130(9): 090201, 2023 Mar 03.
Article En | MEDLINE | ID: mdl-36930903

The study of nonlocality in scenarios that depart from the bipartite Einstein-Podolsky-Rosen setup is allowing one to uncover many fundamental features of quantum mechanics. Recently, an approach to building network-local models based on machine learning led to the conjecture that the family of quantum triangle distributions of [Renou et al., Phys. Rev. Lett. 123, 140401 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.140401] did not admit triangle-local models in a larger range than the original proof. We prove part of this conjecture in the affirmative. Our approach consists of reducing the family of original, four-outcome distributions to families of binary-outcome ones, and then using the inflation technique to prove that these families of binary-outcome distributions do not admit triangle-local models. This constitutes the first successful use of inflation in a proof of quantum nonlocality in networks for distributions whose nonlocality could not be proved with alternative methods. Moreover, we provide a method to extend proofs of network nonlocality in concrete distributions of a parametrized family to continuous ranges of the parameter. In the process, we produce a large collection of network Bell inequalities for the triangle scenario with binary outcomes, which are of independent interest.

5.
Phys Rev Lett ; 128(1): 010403, 2022 Jan 07.
Article En | MEDLINE | ID: mdl-35061469

Networks have advanced the study of nonlocality beyond Bell's theorem. Here, we introduce the concept of full network nonlocality, which describes correlations that necessitate all links in a network to distribute nonlocal resources. Showcasing that this notion is stronger than standard network nonlocality, we prove that the most well-known network Bell test does not witness full network nonlocality. In contrast, we demonstrate that its generalization to star networks is capable of detecting full network nonlocality in quantum theory. More generally, we point out that established methods for analyzing local and theory-independent correlations in networks can be combined in order to systematically deduce sufficient conditions for full network nonlocality in any network and input-output scenario. We demonstrate the usefulness of these methods by constructing polynomial witnesses of full network nonlocality for the bilocal scenario. Then, we show that these inequalities can be violated via quantum elegant joint measurements.

6.
Rep Prog Phys ; 85(5)2022 Mar 28.
Article En | MEDLINE | ID: mdl-34883470

Bell's theorem proves that quantum theory is inconsistent with local physical models. It has propelled research in the foundations of quantum theory and quantum information science. As a fundamental feature of quantum theory, it impacts predictions far beyond the traditional scenario of the Einstein-Podolsky-Rosen paradox. In the last decade, the investigation of nonlocality has moved beyond Bell's theorem to consider more sophisticated experiments that involve several independent sources which distribute shares of physical systems among many parties in a network. Network scenarios, and the nonlocal correlations that they give rise to, lead to phenomena that have no counterpart in traditional Bell experiments, thus presenting a formidable conceptual and practical challenge. This review discusses the main concepts, methods, results and future challenges in the emerging topic of Bell nonlocality in networks.

7.
Phys Rev Lett ; 125(24): 240505, 2020 Dec 11.
Article En | MEDLINE | ID: mdl-33412021

The standard definition of genuine multipartite entanglement stems from the need to assess the quantum control over an ever-growing number of quantum systems. We argue that this notion is easy to hack: in fact, a source capable of distributing bipartite entanglement can, by itself, generate genuine k-partite entangled states for any k. We propose an alternative definition for genuine multipartite entanglement, whereby a quantum state is genuinely network k-entangled if it cannot be produced by applying local trace-preserving maps over several (k-1)-partite states distributed among the parties, even with the aid of global shared randomness. We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.

8.
Phys Rev Lett ; 123(14): 140503, 2019 Oct 04.
Article En | MEDLINE | ID: mdl-31702186

We present a method that allows the study of classical and quantum correlations in networks with causally independent parties, such as the scenario underlying entanglement swapping. By imposing relaxations of factorization constraints in a form compatible with semidefinite programing, it enables the use of the Navascués-Pironio-Acín hierarchy in complex quantum networks. We first show how the technique successfully identifies correlations not attainable in the entanglement-swapping scenario. Then we use it to show how the nonlocal power of measurements can be activated in a network: there exist measuring devices that, despite being unable to generate nonlocal correlations in the standard Bell scenario, provide a classical-quantum separation in an entanglement swapping configuration.

...