Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38857146

RESUMEN

Super resolution ultrasound imaging using the erythrocytes (SURE) has recently been introduced. The method uses erythrocytes as targets instead of fragile microbubbles (MBs). The abundance of erythrocyte scatterers makes it possible to acquire SURE data in just a few seconds compared to several minutes in ultrasound localization microscopy (ULM) using MBs. A high number of scatterers can reduce the acquisition time, however, the tracking of uncorrelated and high-density scatterers is quite challenging. This paper hypothesizes that it is possible to detect and track erythrocytes as targets to obtain vascular flow images. A SURE tracking pipeline is used with modules for beamforming, recursive synthetic aperture imaging, motion estimation, echo canceling, peak detection, and recursive nearest neighbor tracker. The SURE tracking pipeline is capable of distinguishing the flow direction and separating tubes of a simulated Field II phantom with 125 to 25 µm wall-to-wall tube distances, as well as a 3D-printed hydrogel micro-flow phantom with 100 to 60 µm wall-to-wall channel distances. The comparison of an in-vivo SURE scan of a Sprague-Dawley rat kidney with ULM and micro-CT scans with voxel sizes of 26.5µm and 5µm demonstrated consistent findings. A microvascular structure composed of 16 vessels exhibited similarities across all imaging modalities. The flow direction and velocity profiles in the SURE scan were found to be concordant with those from ULM.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38857145

RESUMEN

A new approach for vascular super resolution imaging using the erythrocytes as targets (SURE imaging) is described and investigated. SURE imaging does not require fragile contrast agent bubbles, making it possible to use the maximum allowable mechanical index for ultrasound scanning for an increased penetration depth. A synthetic aperture ultrasound sequence was employed with 12 virtual sources using a 10 MHz GE L8-18i-D linear array hockey stick probe. The axial resolution was 1.20λ,(185.0µm) and the lateral resolution was 1.50λ,(231.3µm). Field IIpro simulations were conducted on 12.5 µm radius vessel pairs with varying separations. A vessel pair with a separation of 70 µm could be resolved, indicating a SURE image resolution below half a wavelength. A Verasonics research scanner was used for the in vivo experiments to scan the kidneys of Sprague-Dawley rats for up to 46 s to visualize their microvasculature by processing from 0.1 up to 45 s of data for SURE imaging, and for 46.8 s for super resolution (SR) imaging with a SonoVue contrast agent. Afterward, the renal vasculature was filled with the ex vivo micro-CT contrast agent Microfil, excised, and scanned in a micro-CT scanner at both a 22.6 µm voxel size for 11 hours, and for 20 hours in a 5 µm voxel size for validating the SURE images. Comparing the SURE and micro-CT images revealed that vessels with a diameter of 28 µm, five times smaller than the ultrasound wavelength, could be detected, and the dense grid of microvessels in the full kidney was shown for scan times between 1 to 10 s. The vessel structure in the cortex was also similar for the SURE and SR images. Fourier ring correlation indicated a resolution capability of 29 µm. SURE images are acquired in seconds rather than minutes without any patient preparation or contrast injection, making the method translatable to clinical use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...