Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(9): 3872-3878, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37116109

RESUMEN

Several technologies, including photodetection, imaging, and data communication, could greatly benefit from the availability of fast and controllable conversion of terahertz (THz) light to visible light. Here, we demonstrate that the exceptional properties and dynamics of electronic heat in graphene allow for a THz-to-visible conversion, which is switchable at a sub-nanosecond time scale. We show a tunable on/off ratio of more than 30 for the emitted visible light, achieved through electrical gating using a gate voltage on the order of 1 V. We also demonstrate that a grating-graphene metamaterial leads to an increase in THz-induced emitted power in the visible range by 2 orders of magnitude. The experimental results are in agreement with a thermodynamic model that describes blackbody radiation from the electron system heated through intraband Drude absorption of THz light. These results provide a promising route toward novel functionalities of optoelectronic technologies in the THz regime.

2.
ACS Appl Mater Interfaces ; 11(36): 33109-33115, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31429268

RESUMEN

The extreme sensitivity of the metal-insulator (M-I) transition in RNiO3 (R = rare-earth ion) nickelates to various extrinsic and intrinsic factors rely on mechanisms driving structure-property relations. Here, we demonstrate a unique way to control the M-I transition of epitaxial Pr0.5Sm0.5NiO3 thin films using a mosaic template of the LaAlO3(100) substrate; two sets of epitaxial films were deposited on highly oriented crystals and mosaic (with multiple crystallites) crystals. While the former films exhibit a robust and sharp M-I transition, the films on the mosaic substrate show distinctively much more subtle and broad transition, albeit same factors suggesting compositional purity. Terahertz (THz) dynamic conductivity too behaves very differently for the two types of films; Drude dynamics dominate the conductivity of highly crystalline films, whereas disorder-driven Drude-Smith conductivity prevails in mosaic films. Using this mosaic structure-controlled M-I transition and conductivity dynamics, we propose to implement these two templates of films for digital and analog THz transmission amplitude modulators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA