Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 277: 116383, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663192

RESUMEN

Vanillic acid (4-hydroxy-3-methoxybenzoic acid) (VA) is a natural benzoic acid derivative commonly found in herbs, rice, maize, and some fruits and vegetables. However, due to the wide use of VA in various industrial sectors, its presence in the environment might harm living organisms. This study evaluated the toxicity of VA and its isomers, iso-VA and orto-VA. Firstly, the antimicrobial effect of VA and its isomers iso-VA and orto-VA (in doses of 1000; 100, 10, 1; 0.1; 0.01 mg/L) against Escherichia coli, Sarcina spp., Enterobacter homaechei, Staphylococcus aureus and Candida albicans were identified. The toxic effect and protein degradation potential of VA and its isomers were determined using E. coli grpE:luxCDABE and lac:luxCDABE biosensor strains. However, the genotoxicity and oxidative stress generation were assessed with the E. coli recA:luxCDABE biosensor and E. coli strain. The results showed that VA, iso-VA, and orto-VA exhibited antimicrobial activity against all tested bacterial strains. However, VA's antimicrobial effect differed from iso-VA and orto-VA. Similar toxic, genotoxic, and oxidative stress-inducing effects were observed for VA and its isomers. Each compound exhibited toxicity, cellular protein degradation, and genotoxic activity against E. coli grpE:luxCDABE, E. coli lac:luxCDABE, and E. coli recA:luxCDABE strains. Analysis of reactive oxygen species (ROS) generation within E. coli cells highlighted oxidative stress as a contributing factor to the toxicity and genotoxicity of VA and its isomers. While the findings suggest potential applications of VA compounds as food preservatives, their presence in the environment raises concerns regarding the risks posed to living organisms due to their toxic and genotoxic characteristics.


Asunto(s)
Escherichia coli , Estrés Oxidativo , Ácido Vanílico , Ácido Vanílico/farmacología , Ácido Vanílico/toxicidad , Escherichia coli/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Staphylococcus aureus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Pruebas de Mutagenicidad , Antibacterianos/toxicidad , Antibacterianos/farmacología , Antiinfecciosos/toxicidad , Antiinfecciosos/farmacología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38023771

RESUMEN

Large-scale production of Arbuscular Mycorrhizal Fungi (AMF) consortia is a crucial stride in harnessing their potential for sustainable agriculture and plant growth enhancement. However, establishing optimal production conditions is challenging due to their obligate nature, variability, lack of standardized protocols, and limited understanding of their specific requirements. Previous attempts to standardize Root Organ Cultures (ROC) for AMF overlooked challenges related to viable inoculum production for field applications. This current investigation reported, for the first time, the optimization of various factors during large-scale production of AMF using ROC. By optimizing factors like gelling agents, media preparation, medium-to-inoculum ratios, incubation conditions, age, harvesting method and drying temperatures, we achieved significant yields of viable propagules. The standardized protocol outlined in this study will greatly influence commercial-scale AMF production. These standardized protocols are poised to contribute to larger-scale AMF production worldwide, with the potential to support sustainable agriculture and ecosystem management.

3.
Bioinformation ; 18(9): 780-785, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37426513

RESUMEN

Sixteen keratinolytic bacteria were isolated from poultry farm soil samples. The highest keratinlytic enzyme producers of Bacillus flexus was confirmed with 16S rRNA sequence analysis. It is of interest to understand the binding efficiency of the modelled keratinase from Bacillus flexus with different substrates using molecular docking studies. Data provides insights for the identification of substrate recognition patterns, and the development of suitable enzymes to improve their use in keratin degradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...