Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 7(2): e31845, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22359636

RESUMEN

Among chromatin remodeling factors, the ISWI family displays a nucleosome-enhanced ATPase activity coupled to DNA translocation. While these enzymes are known to bind to DNA, their activity has not been fully characterized. Here we use TEM imaging and single molecule manipulation to investigate the interaction between DNA and yeast Isw1a. We show that Isw1a displays a highly cooperative ATP-independent binding to and bridging between DNA segments. Under appropriate tension, rare single nucleation events can sometimes be observed and loop DNA with a regular step. These nucleation events are often followed by binding of successive complexes bridging between nearby DNA segments in a zipper-like fashion, as confirmed by TEM observations. On nucleosomal substrates, we show that the specific ATP-dependent remodeling activity occurs in the context of cooperative Isw1a complexes bridging extranucleosomal DNA. Our results are interpreted in the context of the recently published partial structure of Isw1a and support its acting as a "protein ruler" (with possibly more than one tick).


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/ultraestructura , Adenosina Trifosfato/metabolismo , ADN de Hongos/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Microscopía Electrónica de Transmisión , Unión Proteica , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Especificidad por Sustrato
2.
FEBS J ; 278(19): 3596-607, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21810177

RESUMEN

Through its capability to transiently pack and unpack our genome, chromatin is a key player in the regulation of gene expression. Single-molecule approaches have recently complemented conventional biochemical and biophysical techniques to decipher the complex mechanisms ruling chromatin dynamics. Micromanipulations with tweezers (magnetic or optical) and imaging with molecular microscopy (electron or atomic force) have indeed provided opportunities to handle and visualize single molecules, and to measure the forces and torques produced by molecular motors, along with their effects on DNA or nucleosomal templates. By giving access to dynamic events that tend to be blurred in traditional biochemical bulk experiments, these techniques provide critical information regarding the mechanisms underlying the regulation of gene activation and deactivation by nucleosome and chromatin structural changes. This minireview describes some single-molecule approaches to the study of ATP-consuming molecular motors acting on DNA, with applications to the case of nucleosome-remodelling machines.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Motoras Moleculares/metabolismo , Proteínas Motoras Moleculares/ultraestructura , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Cromatina/metabolismo , Cromatina/ultraestructura , ADN/química , ADN/metabolismo , Microscopía de Fuerza Atómica/instrumentación , Microscopía de Fuerza Atómica/métodos , Microscopía Electrónica de Transmisión/instrumentación , Microscopía Electrónica de Transmisión/métodos , Conformación de Ácido Nucleico , Pinzas Ópticas
3.
Curr Opin Struct Biol ; 19(5): 615-22, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19783425

RESUMEN

Magnetic traps provide a simple technique to pull and twist a variety of biomolecules and monitor the resulting change in extension. They have been used with great success to investigate the interaction of stretched and supercoiled DNA and DNA fibers (e.g. chromatin) with a great variety of enzymes. In this small review we will address their recent use in the study of topoisomerases, gyrase, DNA translocases and various structural proteins.


Asunto(s)
Bioquímica/métodos , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Magnetismo , Proteínas/química , Proteínas/metabolismo , Animales , Enzimas/metabolismo , Humanos , Unión Proteica
4.
Mol Cell ; 21(3): 417-25, 2006 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-16455496

RESUMEN

The Snf2 family represents a functionally diverse class of ATPase sharing the ability to modify DNA structure. Here, we use a magnetic trap and an atomic force microscope to monitor the activity of a member of this class: the RSC complex. This enzyme caused transient shortenings in DNA length involving translocation of typically 400 bp within 2 s, resulting in the formation of a loop whose size depended on both the force applied to the DNA and the ATP concentration. The majority of loops then decrease in size within a time similar to that with which they are formed, suggesting that the motor has the ability to reverse its direction. Loop formation was also associated with the generation of negative DNA supercoils. These observations support the idea that the ATPase motors of the Snf2 family of proteins act as DNA translocases specialized to generate transient distortions in DNA structure.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/química , Conformación de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/metabolismo , ADN/metabolismo , ADN/ultraestructura , ADN-Topoisomerasas/metabolismo , ADN Superhelicoidal/química , ADN Superhelicoidal/metabolismo , Sustancias Macromoleculares , Microscopía de Fuerza Atómica , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...