Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 8(14): 3206-3210, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28656769

RESUMEN

In order to realize high-throughput roll-to-roll manufacturing of flexible perovskite solar cells, low-temperature processing of all device components must be realized. However, the most commonly used electron transporting layer in high-performance perovskite solar cells is based on TiO2 thin films processed at high temperature (>450 °C). Here, we demonstrate room temperature solution processing of the TiOx layer that performs as well as the high temperature TiO2 layer in perovskite solar cells, as evidenced by a champion solar cell efficiency of 16.3%. Using optical spectroscopy, electrical measurements, and X-ray diffraction, we show that the room-temperature processed TiOx is amorphous with organic residues, and yet its optical and electrical properties are on par with the high-temperature TiO2. Flexible perovskite solar cells that employ a room-temperature TiOx layer with a power conversion efficiency of 14.3% are demonstrated.

2.
Opt Eng ; 56(3)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33005063

RESUMEN

In this paper, the development of a three-beam aerosol backscatter correlation (ABC) lidar to measure wind characteristics for wake vortex and plume tracking applications is discussed. This is a direct detection elastic lidar that uses three laser transceivers, operating at 1030 nm wavelength with ~10 kHz pulse repetition frequency and nanosec class pulse widths, to directly obtain three components of wind velocities. By tracking the motion of aerosol structures along and between three near-parallel laser beams, three-component wind speed profiles along the field-of-view of laser beams are obtained. With three 8-inch transceiver modules, placed in a near-parallel configuration on a two-axis pan-tilt scanner, the lidar measures wind speeds up to 2 km away. Optical flow algorithms have been adapted to obtain the movement of aerosol structures between the beams. Aerosol density fluctuations are cross-correlated between successive scans to obtain the displacements of the aerosol features along the three axes. Using the range resolved elastic backscatter data from each laser beam, which is scanned over the volume of interest, a 3D map of aerosol density in a short time span is generated. The performance of the ABC wind lidar prototype, validated using sonic anemometer measurements, is discussed.

3.
Opt Lett ; 39(6): 1533-6, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24690831

RESUMEN

In-band core-pumped Ho3+-doped ZBLAN fiber lasers at the 1.2 µm region were investigated with different gain fiber lengths. A 2.4 W 1190 nm all-fiber laser with a slope efficiency of 42% was achieved by using a 10 cm long gain fiber pumped at a maximum available 1150 nm pump power of 5.9 W. A 1178 nm all-fiber laser was demonstrated with an output power of 350 mW and a slope efficiency of 6.5%. High Ho3+ doping in ZBLAN is shown to be effective in producing single-frequency fiber lasers and short-length fiber amplifiers immune from stimulated Brillouin scattering.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Holmio/química , Rayos Láser , Transferencia de Energía , Diseño de Equipo , Análisis de Falla de Equipo , Holmio/efectos de la radiación
4.
Opt Express ; 21(11): 13279-92, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23736581

RESUMEN

We describe a new method for the measurement of molecular mixing ratios called Cross-Band Relative Absorption (CoBRA). The proposed method is based on relative measurements in different molecular bands referenced to a band of O2 with properly selected wavelength combinations providing high level of cancelation in temperature sensitivities. The CoBRA approach is particularly promising for satellite based remote sensing of molecular mixing ratios of the atmospheric trace gases. Very low temperature sensitivities and the potential of achieving close weighting function matching for the measurement and reference wavelengths are the main advantages of the method. The effectiveness of CoBRA approach is demonstrated for the retrieval of CO2 mixing ratios (XCO2) with application to the ASCENDS mission.

5.
Appl Opt ; 52(35): 8540-8, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24513899

RESUMEN

The vertical profile of atmospheric temperature is a principal state variable to study atmospheric stability. A lidar system, constructed using a 355 nm Nd:YAG laser transmitter, measures the temperature profile using the rotational Raman technique. In comparison with traditional Raman lidar, the major innovations are the use of a low peak power and high repetition rate laser to achieve eye-safe operation in a compact reliable instrument and the use of an angle tuning filter to select operating wavelengths. We demonstrate the capability of both nighttime and daytime measurements as a step toward a future stand-alone capability for routine measurements of important meteorological properties in the lower atmosphere.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Ojo/efectos de la radiación , Rayos Láser , Fotometría/instrumentación , Protección Radiológica/instrumentación , Espectrometría Raman/instrumentación , Termografía/instrumentación , Atmósfera/análisis , Diseño de Equipo , Humanos , Lentes , Temperatura
6.
Opt Lett ; 37(20): 4185-7, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23073405

RESUMEN

A single-frequency (SF) fiber laser at 1200 nm was developed with a distributed Bragg reflector (DBR) configuration by splicing a 22 mm long highly holmium-doped ZBLAN (ZrF(4)-BaF(2)-LaF(3)-AlF(3)-NaF) fiber with a pair of silica fiber Bragg gratings. The linewidth was estimated to be less than 100 kHz based on the measured frequency noise. The relative intensity noise was measured to be <110 dB/Hz at the relaxation oscillation peak and the polarization extinction ratio was measured to be >19 dB. Our results highlight the exciting prospect that wavelength coverage of SF DBR fiber lasers can be expanded significantly by using rare-earth-doped ZBLAN fibers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...