Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genomics ; 116(4): 110868, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38795738

RESUMEN

Hybrid sterility, a hallmark of postzygotic isolation, arises from parental genome divergence disrupting meiosis. While chromosomal incompatibility is often implicated, the underlying mechanisms remain unclear. This study investigated meiotic behavior and genome-wide divergence in bighead catfish (C. macrocephalus), North African catfish (C. gariepinus), and their sterile male hybrids (important in aquaculture). Repetitive DNA analysis using bioinformatics and cytogenetics revealed significant divergence in satellite DNA (satDNA) families between parental species. Notably, one hybrid exhibited successful meiosis and spermatozoa production, suggesting potential variation in sterility expression. Our findings suggest that genome-wide satDNA divergence, rather than chromosome number differences, likely contributes to meiotic failure and male sterility in these catfish hybrids.


Asunto(s)
Bagres , ADN Satélite , Hibridación Genética , Meiosis , Animales , Bagres/genética , Masculino , ADN Satélite/genética , Infertilidad Masculina/genética , Infertilidad Masculina/veterinaria , Genoma , Pueblo Norteafricano
2.
PLoS One ; 19(5): e0302584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709757

RESUMEN

The North African catfish (Clarias gariepinus) is a significant species in aquaculture, which is crucial for ensuring food and nutrition security. Their high adaptability to diverse environments has led to an increase in the number of farms that are available for their production. However, long-term closed breeding adversely affects their reproductive performance, leading to a decrease in production efficiency. This is possibly caused by inbreeding depression. To investigate the root cause of this issue, the genetic diversity of captive North African catfish populations was assessed in this study. Microsatellite genotyping and mitochondrial DNA D-loop sequencing were applied to 136 catfish specimens, collected from three populations captured for breeding in Thailand. Interestingly, extremely low inbreeding coefficients were obtained within each population, and distinct genetic diversity was observed among the three populations, indicating that their genetic origins are markedly different. This suggests that outbreeding depression by genetic admixture among currently captured populations of different origins may account for the low productivity of the North African catfish in Thailand. Genetic improvement of the North African catfish populations is required by introducing new populations whose origins are clearly known. This strategy should be systematically integrated into breeding programs to establish an ideal founder stock for selective breeding.


Asunto(s)
Bagres , ADN Mitocondrial , Variación Genética , Endogamia , Repeticiones de Microsatélite , Animales , Acuicultura , Bagres/genética , ADN Mitocondrial/genética , Genotipo , Repeticiones de Microsatélite/genética , Tailandia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA