Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sci Total Environ ; 865: 161198, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36592901

RESUMEN

To examine the suitability of fish scales as potential tracers of nutrient pollution, we analysed the nitrogen and carbon stable isotope values (δ15N and δ13C) in scales of a generalist fish species, roach Rutilus rutilus, collected from 22 Czech reservoirs covering wide gradients of catchment land use and nutrient enrichment. Using generalised additive mixed models in the first step and generalised linear mixed models in the second step, we evaluated the response of roach scale stable isotope values to catchment land use variables (percentage of agricultural land and human population density) and in-reservoir water quality variables. Roach scale δ15N values varied by 15 ‰ among the reservoirs and were strongly, linearly, and positively associated with the percentage of agricultural land in the reservoir catchments, pointing to agriculture as the dominant source of nitrogen pollution in the investigated systems. Roach scale δ13C values differed by 8 ‰ among the studied reservoirs and were not related to catchment land use variables or in-reservoir primary production (chlorophyll-a levels). Possible variation in roach foraging strategies (littoral versus pelagic) between reservoirs or the contrasting effects of eutrophication-related autotrophic and heterotrophic processes on baseline δ13C values may explain the lack of relationships between roach scale δ13C values and the explanatory variables. In summary, our findings show that fish scale δ15N values are sensitive bioindicators of catchment-derived anthropogenic nitrogen inputs to freshwater ecosystems. Because scales can be sampled in a nonlethal way and δ15N analysis is relatively inexpensive, we suggest that measuring the δ15N values of fish scales could be an effective method for monitoring nitrogen pollution in aquatic environments.


Asunto(s)
Cyprinidae , Ecosistema , Animales , Humanos , Isótopos de Nitrógeno/análisis , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Isótopos de Carbono/análisis
3.
Folia Parasitol (Praha) ; 692022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36185031

RESUMEN

Ligula intestinalis (Linnaeus, 1758) is a tapeworm parasite with a worldwide distribution that uses a wide variety of fish species as its second intermediate host. In the present study, we investigated the prevalence and population genetic structure of plerocercoids of L. intestinalis in five common cyprinoid species, roach Rutilus rutilus (Linnaeus), freshwater bream Abramis brama (Linnaeus), white bream Blicca bjoerkna (Linnaeus), bleak Alburnus alburnus (Linnaeus), and rudd Scardinius erythrophthalmus (Linnaeus), collected in six water bodies of the Czech Republic (Milada, Most, Medard, Jordán, Rímov and Lipno). Of the six study sites, the highest frequency of parasitism was recorded in Lake Medard (15%). The overall prevalence rate among the species was as follows: roach > rudd ≥ freshwater bream > bleak > white bream. Two mitochondrial genes (cytb and COI) were used to compare the population genetic structure of parasite populations using selected samples from the five fish species. The results of the phylogenetic analysis indicated that all populations of L. intestinalis were placed in Clade A, previously identified as the most common in Europe. At a finer scale, haplotype network and PCoA analyses indicated the possible emergence of host specificity of several mtDNA haplotypes to the freshwater bream. Moreover, pairwise Fixation indices (FST) revealed a significant genetic structure between the parasite population in freshwater bream and other host species. Parasite populations in roach not only showed the highest rate of prevalence but also depicted a maximum number of shared haplotypes with populations from bleak and rudd. Our results suggest that recent ecological differentiation might have influenced tapeworm populations at a fine evolutionary scale. Thus, the differences in prevalence between fish host species in different lakes might be influenced not only by the parasite's ecology, but also by its genetic diversity.


Asunto(s)
Cestodos , Infecciones por Cestodos , Cyprinidae , Enfermedades de los Peces , Parásitos , Animales , Cestodos/genética , Infecciones por Cestodos/epidemiología , Infecciones por Cestodos/parasitología , Infecciones por Cestodos/veterinaria , Cyprinidae/parasitología , República Checa/epidemiología , ADN Mitocondrial , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/parasitología , Estructuras Genéticas , Genética de Población , Interacciones Huésped-Parásitos , Lagos , Filogenia , Prevalencia , Agua
5.
Mov Ecol ; 9(1): 40, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321114

RESUMEN

Movement ecology is increasingly relying on experimental approaches and hypothesis testing to reveal how, when, where, why, and which animals move. Movement of megafauna is inherently interesting but many of the fundamental questions of movement ecology can be efficiently tested in study systems with high degrees of control. Lakes can be seen as microcosms for studying ecological processes and the use of high-resolution positioning systems to triangulate exact coordinates of fish, along with sensors that relay information about depth, temperature, acceleration, predation, and more, can be used to answer some of movement ecology's most pressing questions. We describe how key questions in animal movement have been approached and how experiments can be designed to gather information about movement processes to answer questions about the physiological, genetic, and environmental drivers of movement using lakes. We submit that whole lake telemetry studies have a key role to play not only in movement ecology but more broadly in biology as key scientific arenas for knowledge advancement. New hardware for tracking aquatic animals and statistical tools for understanding the processes underlying detection data will continue to advance the potential for revealing the paradigms that govern movement and biological phenomena not just within lakes but in other realms spanning lands and oceans.

6.
Ecol Evol ; 8(9): 4544-4551, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29760895

RESUMEN

The perception of danger represents an essential ability of prey for gaining an informational advantage over their natural enemies. Especially in complex environments or at night, animals strongly rely on chemoreception to avoid predators. The ability to recognize danger by chemical cues and subsequent adaptive responses to predation threats should generally increase prey survival. Recent findings suggest that European catfish (Silurus glanis) introduction induce changes in fish community and we tested whether the direction of change can be attributed to differences in chemical cue perception. We tested behavioral response to chemical cues using three species of freshwater fish common in European water: rudd (Scardinius erythrophthalmus), roach (Rutilus rutilus), and perch (Perca fluviatilis). Further, we conducted a prey selectivity experiment to evaluate the prey preferences of the European catfish. Roach exhibited the strongest reaction to chemical cues, rudd decreased use of refuge and perch did not alter any behavior in the experiment. These findings suggest that chemical cue perception might be behind community data change and we encourage collecting more community data of tested prey species before and after European catfish introduction to test the hypothesis. We conclude that used prey species can be used as a model species to verify whether chemical cue perception enhances prey survival.

7.
Sci Rep ; 7(1): 6924, 2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28761092

RESUMEN

Predator-prey relationships are often perceived simply as a situation in which a predator enhances its own fitness while reducing the fitness of its prey. However, this relationship may become reversed when the prey feeds on the juvenile predator stages. We investigated this phenomenon in a model asp (Leuciscus aspius; predator)-bleak (Alburnus alburnus; prey) relationship. The adhesive asp eggs are available for bleak predation after a spawning event for only tens of seconds before they adhere to the stones, where bleak do not forage. Gut content analysis demonstrated that eggs were utilized in high quantities, especially in the spawning peak of the asp reproductive season. Furthermore, using underwater video, we recorded the bleak feeding efficiency on naturally drifting asp eggs as the percentage of eggs eaten. Within the 40 cm egg trajectory captured by our cameras, total egg mortality was 21.2 ± 2.2% on average. The highest survival chances occurred among eggs drifting in aggregations, since the short drifting distance together with their aggregated distribution satiated bleak and part of the egg aggregation could attach to the spawning ground. This study emphasizes the potential efficiency of predator egg utilization by prey, which may have further consequences in predator-prey dynamics.


Asunto(s)
Alimentación Animal , Cyprinidae/fisiología , Conducta Predatoria , Animales , Cyprinidae/crecimiento & desarrollo , Femenino , Cadena Alimentaria , Masculino , Dinámica Poblacional , Reproducción , Grabación en Video
8.
Sci Rep ; 7(1): 4737, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28680056

RESUMEN

In polygynandrous mating systems, in which females limit reproductive success, males can increase their success by investing in courtship. Earlier arrival at the spawning ground compared to when females arrive may increase their opportunities in competitive mating systems. In this study, we used passive telemetry to test whether a male minnow known as the asp, Leuciscus aspius, times its arrival at spawning grounds relative to the arrival of females. Males arrived in a model stream approximately five days earlier than females on average and left four to five days later than females over two years. Both sexes performed a daily migration between a staging ground (standing water, low energy costs) and the fluvial spawning ground (high energy costs). Fish abundance peaked twice a day, with a major peak at sunset and a minor peak at sunrise and with the evening peak abundance for males occurring 1 hour 40 minutes earlier than that of females. The number of females on the spawning ground never exceeded the number of males. While the degree of protandry is hypothesized to be influenced by the operational sex ratio (ranging from 0.5 to 1 in our study), our data did not support this theory.


Asunto(s)
Cyprinidae/fisiología , Conducta Sexual Animal/fisiología , Animales , Femenino , Masculino , Reproducción , Estaciones del Año , Procesos de Determinación del Sexo , Telemetría
10.
PLoS One ; 10(3): e0122437, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25793776

RESUMEN

The European Standard EN 14757 recommends gillnet mesh sizes that range from 5 to 55mm (knot-to-knot) for the standard monitoring of fish assemblages and suggests adding gillnets with larger mesh sizes if necessary. Our research showed that the recommended range of mesh sizes did not provide a representative picture of fish sizes for larger species that commonly occur in continental Europe. We developed a novel, large mesh gillnet which consists of mesh sizes 70, 90, 110 and 135mm (knot to knot, 10m panels) and assessed its added value for monitoring purposes. From selectivity curves obtained by sampling with single mesh size gillnets (11 mesh sizes 6 - 55mm) and large mesh gillnets, we identified the threshold length of bream (Abramis brama) above which this widespread large species was underestimated by European standard gillnet catches. We tested the European Standard gillnet by comparing its size composition with that obtained during concurrent pelagic trawling and purse seining in a cyprinid-dominated reservoir and found that the European Standard underestimated fish larger than 292mm by 26 times. The inclusion of large mesh gillnets in the sampling design removed this underestimation. We analysed the length-age relationship of bream in the Rímov Reservoir, and concluded that catches of bream larger than 292mm and older than five years were seriously underrepresented in European Standard gillnet catches. The Rímov Reservoir is a typical cyprinid-dominated water body where the biomass of bream > 292mm formed 70% of the pelagic trawl and purse seine catch. The species-specific relationships between the large mesh gillnet catch and European Standard catch suggested that the presence of carp (Cyprinus carpio), European catfish (Silurus glanis), tench (Tinca tinca) or bream warrants the use of both gillnet types. We suggest extending the gillnet series in the European Standard to avoid misinterpretation of fish community biomass estimates.


Asunto(s)
Sesgo , Biomasa , Explotaciones Pesqueras , Peces/fisiología , Animales , Europa (Continente) , Peces/anatomía & histología , Geografía , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...