Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurochem ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491912

RESUMEN

The nucleoside guanosine is an endogenous neuromodulator associated with neuroprotection. The roles of guanosine during aging are still not fully elucidated. Guanosine modulates SUMOylation in neurons and astrocytes in vitro, but it is not known whether guanosine can modulate SUMOylation in vivo and improve cognitive functions during aging. SUMOylation is a post-translational protein modification with potential neuroprotective roles. In this follow-up study, we investigated whether guanosine could modulate SUMOylation in vivo and behavior in young and aged mice. Young (3-month-old) and aged (24-month-old) C57BL/6 mice were treated with guanosine (8 mg/kg intraperitoneal) daily for 14 days. Starting on day 8 of treatment, the following behavioral tests were performed: open field, novel object location, Y-maze, sucrose splash test, and tail suspension test. Treatment with guanosine did not change the locomotor activity of young or aged mice in the open-field test. Treatment with guanosine improved short-term memory only for young mice but did not change the working memory of either young or aged mice, as evaluated using object recognition and the Y-maze tests, respectively. Depressive-like behaviors, such as impaired grooming evaluated through the splash test, did not change in either young or aged mice. However, young mice treated with guanosine increased their immobility time in the tail suspension test, suggesting an effect on behavioral coping strategies. Global SUMO1-ylation was significantly increased in the hippocampus of young and aged mice after 14 days of treatment with guanosine, whereas no changes were detected in the cerebral cortex of either young or aged mice. Our findings demonstrate that guanosine also targets hippocampal SUMOylation in vivo, thereby contributing to a deeper understanding of its mechanisms of action. This highlights the involvement of SUMOylation in guanosine's modulatory and neuroprotective effects.

2.
IBRO Neurosci Rep ; 12: 203-209, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35746980

RESUMEN

Small ubiquitin-like modifiers, SUMOs, are proteins that are conjugated to target substrates and regulate their functions in a post-translational modification called SUMOylation. In addition to its physiological roles, SUMOylation has been implicated in several neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases (HD). HD is a neurodegenerative monogenetic autosomal dominant disorder caused by a mutation in the CAG repeat of the huntingtin (htt) gene, which expresses a mutant Htt protein more susceptible to aggregation and toxicity. Besides Htt, other SUMO ligases, enzymes, mitochondrial and autophagic components are also important for the progression of the disease. Here we review the main aspects of Htt SUMOylation and its role in cellular processes involved in the pathogenesis of HD.

4.
Am J Physiol Regul Integr Comp Physiol ; 320(4): R541-R546, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33533311

RESUMEN

Physical exercise attenuates the development of l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia (LID) in 6-hydroxydopamine-induced hemiparkinsonian mice through unknown mechanisms. We now tested if exercise normalizes the aberrant corticostriatal neuroplasticity associated with experimental murine models of LID. C57BL/6 mice received two unilateral intrastriatal injections of 6-hydroxydopamine (12 µg) and were treated after 3 wk with l-DOPA/benserazide (25/12.5 mg/kg) for 4 wk, with individualized moderate-intensity running (60%-70% V̇o2peak) or not (untrained). l-DOPA converted the pattern of plasticity in corticostriatal synapses from a long-term depression (LTD) into a long-term potentiation (LTP). Exercise reduced LID severity and decreased aberrant LTP. These results suggest that exercise attenuates abnormal corticostriatal plasticity to decrease LID.


Asunto(s)
Antiparkinsonianos/toxicidad , Corteza Cerebral/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Discinesia Inducida por Medicamentos/prevención & control , Terapia por Ejercicio , Levodopa/toxicidad , Plasticidad Neuronal/efectos de los fármacos , Trastornos Parkinsonianos/tratamiento farmacológico , Animales , Benserazida/toxicidad , Corteza Cerebral/fisiopatología , Cuerpo Estriado/fisiopatología , Dihidroxifenilalanina/análogos & derivados , Modelos Animales de Enfermedad , Discinesia Inducida por Medicamentos/etiología , Discinesia Inducida por Medicamentos/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/fisiopatología , Carrera , Factores de Tiempo
5.
Pharmaceutics ; 14(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35056925

RESUMEN

Psychoactive substances during pregnancy and lactation is a key problem in contemporary society, causing social, economic, and health disturbance. In 2010, about 30 million people used opioid analgesics for non-therapeutic purposes, and the prevalence of opioids use during pregnancy ranged from 1% to 21%, representing a public health problem. This study aimed to evaluate the long-lasting neurobehavioral and nociceptive consequences in adult offspring rats and mice exposed to morphine during intrauterine/lactation periods. Pregnant rats and mice were exposed subcutaneously to morphine (10 mg/kg/day) during 42 consecutive days (from the first day of pregnancy until the last day of lactation). Offspring were weighed on post-natal days (PND) 1, 5, 10, 15, 20, 30, and 60, and behavioral tasks (experiment 1) or nociceptive responses (experiment 2) were assessed at 75 days of age (adult life). Morphine-exposed female rats displayed increased spontaneous locomotor activity. More importantly, both males and female rats perinatally exposed to morphine displayed anxiety- and depressive-like behaviors. Morphine-exposed mice presented alterations in the nociceptive responses on the writhing test. This study showed that sex difference plays a role in pain threshold and that deleterious effects of morphine during pre/perinatal periods are nonrepairable in adulthood, which highlights the long-lasting clinical consequences related to anxiety, depression, and nociceptive disorders in adulthood followed by intrauterine and lactation morphine exposure.

6.
Med Res Rev ; 41(2): 1195-1215, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33174618

RESUMEN

Propolis consists of a honeybee product, with a complex mix of substances that have been widely used in traditional medicine. Among several compounds present in propolis, caffeic acid phenethyl ester (CAPE), and pinocembrin emerge as two principal bioactive compounds, with benefits in a variety of body systems. In addition to its well-explored pharmacological properties, neuropharmacological activities have been poorly discussed. In an unprecedented way, the present review addresses the current finding on the promising therapeutic purposes of propolis, focusing on CAPE and pinocembrin, highlighting its use on neurological disturbance, as cerebral ischemia, neuroinflammation, convulsion, and cognitive impairment, as well as psychiatric disorders, such as anxiety and depression. In addition, we provide a critical analysis, discussion, and systematization of the molecular mechanisms which underlie these central nervous system effects. We hypothesize that the pleiotropic action of CAPE and pinocembrin, per se or associated with other substances present in propolis may result in the therapeutic activities reported. Inhibition of the pro-inflammatory cascade, antioxidant activity, and positive neurotrophic modulatory effects consist of the main molecular targets attributed to CAPE and pinocembrin in health benefits.


Asunto(s)
Enfermedades del Sistema Nervioso , Própolis , Animales , Abejas , Ácidos Cafeicos/farmacología , Flavanonas , Humanos , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Alcohol Feniletílico/análogos & derivados
7.
Mol Neurobiol ; 57(9): 3814-3826, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32592125

RESUMEN

Neural stem cells can generate new neurons in the mouse adult brain in a complex multistep process called neurogenesis. Several factors regulate this process, including neurotransmitters, hormones, neurotrophic factors, pharmacological agents, and environmental factors. Purinergic signaling, mainly the adenosinergic system, takes part in neurogenesis, being involved in cell proliferation, migration, and differentiation. However, the role of the purine nucleoside guanosine in neurogenesis remains unclear. Here, we examined the effect of guanosine by using the neurosphere assay derived from neural stem cells of adult mice. We found that continuous treatment with guanosine increased the number of neurospheres, neural stem cell proliferation, and neuronal differentiation. The effect of guanosine to increase the number of neurospheres was reduced by removing adenosine from the culture medium. We next traced the neurogenic effect of guanosine in vivo. The intraperitoneal treatment of adult C57BL/6 mice with guanosine (8 mg/kg) for 26 days increased the number of dividing bromodeoxyuridine (BrdU)-positive cells and also increased neurogenesis, as identified by measuring doublecortin (DCX)-positive cells in the dentate gyrus (DG) of the hippocampus. Antidepressant-like behavior in adult mice accompanied the guanosine-induced neurogenesis in the DG. These results provide new evidence of a pro-neurogenic effect of guanosine on neural stem/progenitor cells, and it was associated in vivo with antidepressant-like effects.


Asunto(s)
Envejecimiento/fisiología , Guanosina/farmacología , Hipocampo/citología , Células-Madre Neurales/citología , Neurogénesis , Animales , Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Giro Dentado/citología , Proteína Doblecortina , Femenino , Masculino , Ratones Endogámicos C57BL , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Esferoides Celulares/citología , Esferoides Celulares/efectos de los fármacos
8.
Behav Brain Res ; 393: 112770, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32561388

RESUMEN

Omega-3-enriched fish oil (FO) and caloric restriction (CR) are nutritional therapeutic approaches that exert an important impact on brain function, behavior, memory, and neuroprotection. Here, we investigate the synergic effects of both therapeutic approaches combined (CR + FO) on behavior (memory, anxiety-like behavior, antidepressant-like behavior), as well as its association with hippocampal brain-derived neurotrophic factor (BDNF) concentrations. Adult male Wistar rats were divided into four dietary groups: Control group (C) - chow ad libitum; CR group - 30 % CR, considering C group food intake; FO group - FO-enriched chow ad libitum; and CR + FO group - FO-enriched 30 % CR chow. After 12 weeks of dietary treatment, behavioural analysis set was conducted, and hippocampal BDNF concentrations were measured. FO group presented anxiolytic-like and antidepressant-like behaviors as well as improved memory in the Morris' water maze. These effects were attenuated by the combined CR + FO treatment. FO group also presented higher BDNF concentrations. There was a positive association between the number of entries in the platform quadrant in the MWM and hippocampal BDNF concentrations (ß = 0.39; R² = 0.15; p = 0.042) and an inverse association between forced swim immobility time and BDNF concentrations (ß = -0.39; R² = 0.15; p = 0.041). Taken together, our data showed that the 12-week FO dietary treatment promoted anxiolytic-like and antidepressant-like behaviors as well as memory improvement, and these effects were associated with BDNF concentrations. Synergic effects of interventions attenuated FO-related behavioral responses and BDNF concentrations and probably reduced hippocampal neuroplasticity.


Asunto(s)
Ansiolíticos/farmacología , Antidepresivos/farmacología , Ansiedad/tratamiento farmacológico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Restricción Calórica , Depresión/tratamiento farmacológico , Aceites de Pescado/farmacología , Hipocampo/efectos de los fármacos , Animales , Ansiolíticos/uso terapéutico , Antidepresivos/uso terapéutico , Aceites de Pescado/uso terapéutico , Hipocampo/metabolismo , Ratas , Ratas Wistar
9.
J Alzheimers Dis ; 73(2): 585-596, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31815695

RESUMEN

Familial hypercholesterolemia (FH) is a genetic disorder caused by dysfunction of low density lipoprotein receptors (LDLr), resulting in elevated plasma cholesterol levels. FH patients frequently exhibit cognitive impairment, a finding recapitulated in LDLr deficient mice (LDLr-/-), an animal model of FH. In addition, LDLr-/- mice are more vulnerable to the deleterious memory impact of amyloid-ß (Aß), a peptide linked to Alzheimer's disease. Here, we investigated whether the expression of proteins involved in Aß metabolism are altered in the brains of adult or middle-aged LDLr-/- mice. After spatial memory assessment, Aß levels and gene expression of LDLr related-protein 1, proteins involved in Aß synthesis, and apoptosis-related proteins were evaluated in prefrontal cortex and hippocampus. Moreover, the location and cell-specificity of apoptosis signals were evaluated. LDLr-/- mice presented memory impairment, which was more severe in middle-aged animals. Memory deficit in LDLr-/- mice was not associated with altered expression of proteins involved in Aß processing or changes in Aß levels in either hippocampus or prefrontal cortex. We further found that the expression of Bcl-2 was reduced while the expression of Bax was increased in both prefrontal cortex and hippocampus in 3- and 14-month-old LDLr-/-mice Finally, LDLr-/- mice presented increased immunoreactivity for activated caspase-3 in the prefrontal cortex and hippocampus. The activation of caspase 3 was predominantly associated with neurons in LDLr-/- mice. Cognitive impairment in LDLr-/- mice is thus accompanied by an exacerbation of neuronal apoptosis in brain regions related to memory formation, but not by changes in Aß processing or levels.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Apoptosis/genética , Química Encefálica/genética , Receptores de LDL/deficiencia , Receptores de LDL/genética , Envejecimiento/metabolismo , Envejecimiento/psicología , Animales , Caspasa 3 , Colesterol/sangre , Expresión Génica , Hipocampo/metabolismo , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Corteza Prefrontal/metabolismo
10.
Mol Neurobiol ; 56(4): 2944-2951, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30073506

RESUMEN

Exercise can act as a disease-modifying agent in Parkinson's disease (PD), and we have previously demonstrated that voluntary exercise in running wheels during 2 weeks normalizes striatopallidal dopaminergic signaling and prevents the development of L-DOPA-induced dyskinesia (LID) in C57BL/6 mice. We now tested whether LID in Swiss albino mice could be attenuated by treadmill-controlled exercise alone or in combination with the reference antidyskinetic drug amantadine. The daily intraperitoneal (i.p.) treatment with three different doses of L-DOPA/benserazide (30/12.5, 50/25, or 70/35 mg/kg) during 3 weeks induced increasing levels of LID scores in hemiparkinsonian Swiss albino mice previously lesioned with a unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA, 10 µg). Then, we addressed the antidyskinetic effects of treadmill-controlled exercise by comparing LID, induced by L-DOPA/benserazide (50/25 mg/kg, i.p.) during 4 weeks, in sedentary and daily exercised mice. Exercise reduced LID and improved motor skills of dyskinetic mice, as indicated by decreased contralateral bias, increase in maximal load test, and latency to fall in rotarod. The antidyskinetic effect of amantadine (60 mg/kg, i.p.) was only observed in sedentary mice, indicating the absence of synergistic antidyskinetic effect of the combination of treadmill exercise plus amantadine. Finally, Western blot analysis unraveled an ability of exercise to increase the striatal immunocontent of glial cell-derived neurotrophic factor (GDNF), apart from normalizing striatal levels of tyrosine hydroxylase. These findings show that controlled treadmill exercise attenuates LID and provide the first indication that the antidyskinetic effects of treadmill exercise may involve increased striatal GDNF levels.


Asunto(s)
Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Discinesia Inducida por Medicamentos/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Levodopa/efectos adversos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Condicionamiento Físico Animal , Animales , Cuerpo Estriado/efectos de los fármacos , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Discinesia Inducida por Medicamentos/patología , Discinesia Inducida por Medicamentos/fisiopatología , Levodopa/administración & dosificación , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Enfermedad de Parkinson/fisiopatología , Tirosina 3-Monooxigenasa/metabolismo
11.
Behav Brain Res ; 353: 51-56, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29964071

RESUMEN

Depression is one of the most common psychiatric symptoms in Alzheimer's disease (AD), and several studies have shown that oxidative stress plays a key role in the etiopathology of both AD and depression. Clinical studies indicate reduced efficacy of the current antidepressants for the treatment of depression in AD. In this regard, agmatine emerges as a neuroprotective agent that presents diverse effects, including antidepressant and antioxidant properties. Here we investigated the antioxidant and antidepressant-like effects of agmatine in a mouse model of AD induced by a single intracerebroventricular (i.c.v.) administration of amyloid-ß 1-40 (Aß). Mice were treated with agmatine (10 mg/kg, intraperitoneally) once a day during seven consecutive days. The first administration of agmatine was 24 h before the i.c.v. injection of aggregated Aß 1-40 (400 pmol/mouse). Ten days after Aß injection, mice were evaluated in the forced swimming test (FST) and open field test for assessment of depressive-like behavior and locomotor activity, respectively. Oxidative parameters were evaluated in the hippocampus of mice 24 h after Aß injection. Agmatine prevented Aß-induced increase in hippocampal lipid peroxidation levels and Aß-induced decrease in catalase activity. In addition, agmatine prevented the increase in immobility time in the FST and the decrease in the latency to the first immobility episode induced by Aß, without changing locomotion in the open field test. These results demonstrate the antioxidant and antidepressant-like effects of agmatine in a mouse model of AD, indicating the potential of agmatine for the treatment of depression associated to AD.


Asunto(s)
Agmatina/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Antidepresivos/farmacología , Antioxidantes/farmacología , Hipocampo/efectos de los fármacos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Fragmentos de Péptidos
12.
Front Behav Neurosci ; 12: 88, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867389

RESUMEN

Over the last years, heavy ethanol consumption by teenagers/younger adults has increased considerably among females. However, few studies have addressed the long-term impact on brain structures' morphology and function of chronic exposure to high ethanol doses from adolescence to adulthood in females. In line with this idea, in the current study we investigated whether heavy chronic ethanol exposure during adolescence to adulthood may induce motor impairments and morphological and cellular alterations in the cerebellum of female rats. Adolescent female Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage. At 90 days of age, motor function of animals was assessed using open field (OF), pole, beam walking and rotarod tests. Following completion of behavioral tests, morphological and immunohistochemical analyses of the cerebellum were performed. Chronic ethanol exposure impaired significantly motor performance of female rats, inducing spontaneous locomotor activity deficits, bradykinesia, incoordination and motor learning disruption. Moreover, histological analysis revealed that ethanol exposure induced atrophy and neuronal loss in the cerebellum. These findings indicate that heavy ethanol exposure during adolescence is associated with long-lasting cerebellar degeneration and motor impairments in female rats.

13.
Behav Brain Res ; 350: 99-108, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-29752970

RESUMEN

Binge-like ethanol intake (BEI) is a socioeconomical problem among adolescents and increasingly affects women. BEI can leave a long-term imprint in the brain, but it is unknown if its effect on cognition and anxiety is cumulative on repeated binge-ethanol episodes. We now submitted female Wistar rats to repeated cycles of binge-like ethanol treatment by intragastrically administering ethanol (3.0 g/kg/day, 20% w/v ethanol; 3 days on/4 days off) starting at postnatal day 35 (PND35). To investigate the short-term effects of BEI during adolescence, rats underwent 1 or 4 cycles of BEI, being evaluated at PND37 and PND58, respectively: both groups displayed anxiety-like behavior in the open field and elevated plus-maze tests, as well as short-term memory deficits in the object recognition task; this was associated with transient decreases of BDNF levels and increases of GFAP levels in the hippocampus. To evaluate the short- and long-lasting effects of BEI in adulthood, rats were subjected to 8 cycles of BEI and evaluated after 7.5 h (PND86) or after 14 days of ethanol withdrawal (PND100). This caused a persistent anxiogenic profile whereas recognition memory was impaired on the short-term, but not 14 days post-administration. The reduced BDNF level observed shortly after BEI recovered upon withdrawal, whereas increased GFAP immunoreactivity was persistent up to 14 days post-administration in adulthood. These findings show that repeated binge-like ethanol episodes from adolescence to adulthood in female rats cause consistent and long-term alterations of anxiety and hippocampal astrogliosis, whereas they trigger a recognition memory deficit paralleled by lower hippocampal BDNF levels, both recovering upon ethanol withdrawal.


Asunto(s)
Ansiedad/etiología , Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Consumo Excesivo de Bebidas Alcohólicas/psicología , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/etiología , Animales , Ansiedad/fisiopatología , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiopatología , Trastornos de la Memoria/fisiopatología , Ratas Wistar , Maduración Sexual , Factores de Tiempo
14.
Neurotoxicology ; 66: 107-120, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29605442

RESUMEN

The primary etiology of Parkinson's disease (PD) remains unclear, but likely reflects a combination of genetic and environmental factors. Exposure to some pesticides, including ziram (zinc dimethyldithiocarbamate), is a relevant risk factor for PD. Like some other environmental neurotoxicants, we hypothesized that ziram can enter the central nervous system from the nasal mucosa via the olfactory nerves. To address this issue, we evaluated the effects of 1, 2 or 4 days of intranasal (i.n., 1 mg/nostril/day) infusions of sodium dimethyldithiocarbamate (NaDMDC), a dimethyldithiocarbamate more soluble than ziram, on locomotor activity in the open field, neurological severity score and rotarod performance. We also addressed the effects of four daily i.n. NaDMDC infusions on olfactory bulb (OB) and striatal measures of cell death, reactive oxygen species (ROS), tyrosine hydroxylase, and the levels of dopamine, noradrenaline, serotonin, and their metabolites. A single i.n. administration of NaDMDC did not significantly alter the behavioral measures. Two consecutive days of i.n. NaDMDC administrations led to a transient neurological deficit that spontaneously resolved within a week. However, the i.n. infusions of NaDMDC for 4 consecutive days induced motor and neurological deficits for up to 7 days after the last NaDMDC administration and increased striatal TH immunocontent and dopamine degradation within a day of the last infusion. Pharmacological treatment with the anti-parkinsonian drugs l-DOPA and apomorphine improved the NaDMDC-induced locomotor deficits. NaDMDC increased serotonin levels and noradrenaline metabolism in the OB 24 h after the last NaDMDC infusion, ROS levels in the OB 2 h after the last infusion, and striatum 2 and 24 h after the last infusion. These results demonstrate, for the first time, that i.n. NaDMDC administration induces neurobehavioral and neurochemical impairments in mice. This accords with evidence that dimethyldithio-carbamate exposure increases the risk of PD and highlights the possibility that olfactory system could be a major route for NaDMDC entry to central nervous system.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Dimetilditiocarbamato/toxicidad , Dopamina/metabolismo , Actividad Motora/efectos de los fármacos , Bulbo Olfatorio/efectos de los fármacos , Enfermedad de Parkinson Secundaria/metabolismo , Administración Intranasal , Animales , Cuerpo Estriado/metabolismo , Dimetilditiocarbamato/administración & dosificación , Hipotermia/inducido químicamente , Masculino , Ratones , Bulbo Olfatorio/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno , Tirosina 3-Monooxigenasa
15.
Neurotox Res ; 33(3): 549-559, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29164519

RESUMEN

Atorvastatin is a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor with cholesterol-lowering, anti-inflammatory, and antioxidant properties. Increasing evidence show atorvastatin acts as a protective agent against insults in the central nervous system (CNS). The regular use of statins has been associated with a reduced risk of Parkinson's disease (PD) development. Here, we evaluated early events involved in the neurotoxicity induced by intranasal (i.n.) infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in rats and the potential of atorvastatin to prevent these early toxic events. Male Wistar rats were pretreated orally with atorvastatin (10 mg/kg/day) or vehicle once a day during seven consecutive days. Twenty-four hours after atorvastatin administration, animals received a single bilateral i.n. infusion of MPTP (1 mg/nostril), and 6 h later, the striatum and the hippocampus were collected to evaluate early oxidative stress parameters and inflammatory cytokines. Atorvastatin prevented MPTP-induced increase in reactive species (RS) generation and in glutathione levels in the striatum. Atorvastatin also prevented the reduction in mitochondrial respiratory chain complex I and II activities evoked by MPTP in the striatum. Atorvastatin per se reduced the levels of the cytokines TNF-α and IL-1ß, and surprisingly, it reduced IL-10 and nerve growth factor levels in the striatum. However, the anti-inflammatory IL-10 levels increased in the striatum following atorvastatin plus MPTP treatment. These effects were not observed in the hippocampus. Our findings reinforce and extend the notion of the neuroprotective effects of atorvastatin in a PD model and indicate the modulation of oxidative and inflammatory responses as the mechanisms associated with therapeutic action of atorvastatin in PD.


Asunto(s)
Atorvastatina/administración & dosificación , Citocinas/metabolismo , Intoxicación por MPTP/prevención & control , Fármacos Neuroprotectores/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/administración & dosificación , Análisis de Varianza , Animales , Vías de Administración de Medicamentos , Esquema de Medicación , Complejo II de Transporte de Electrones/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Masculino , Neurotoxinas/administración & dosificación , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
16.
Front Aging Neurosci ; 9: 327, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29085294

RESUMEN

Periodontitis is an oral chronic infection/inflammatory condition, identified as a source of mediators of inflammation into the blood circulation, which may contribute to exacerbate several diseases. There is increasing evidence that inflammation plays a key role in the pathophysiology of Alzheimer's disease (AD). Although inflammation is present in both diseases, the exact mechanisms and crosslinks between periodontitis and AD are poorly understood. Therefore, this article aims to review possible comorbidity between periodontitis and AD. Here, the authors discuss the inflammatory aspects of periodontitis, how this oral condition produces a systemic inflammation and, finally, the contribution of this systemic inflammation for worsening neuroinflammation in the progression of AD.

17.
Pharmacol Rep ; 69(6): 1240-1246, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29128805

RESUMEN

BACKGROUND: Ursolic acid has been shown to display antidepressant-like effects in mice through the modulation of monoaminergic systems. In this study, we sought to investigate the involvement of signaling pathways on the antidepressant-like effects of ursolic acid. METHODS: Mice were treated orally with ursolic acid (0.1mg/kg) and, 45min later they received the followings inhibitors by intracerebroventricular route: H-89 (PKA inhibitor, 1µg/mouse), KN-62 (CAMK-II inhibitor, 1µg/mouse), chelerythrine (PKC inhibitor, 1µg/mouse), U0126 (MEK1/2 inhibitor, 5µg/mouse), PD98059 (MEK1/2 inhibitor, 5µg/mouse), wortmannin (PI3K irreversible inhibitor, 0.1µg/mouse) or LY294002 (PI3K inhibitor, 10 nmol/mouse). Immobility time of mice was registered in the tail suspension test (TST). RESULTS: The anti-immobility effect of ursolic acid in the TST was abolished by the treatment of mice with H-89, KN-62, chelerythrine, U0126 or PD98059, but not with wortmannin or LY294002. CONCLUSIONS: These results suggest that activation of PKA, PKC, CAMK-II, MEK1/2 may underlie the antidepressant-like effects of ursolic acid.


Asunto(s)
Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacología , Administración Oral , Animales , Conducta Animal/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Depresión/fisiopatología , Modelos Animales de Enfermedad , Suspensión Trasera , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Masculino , Ratones , Proteína Quinasa C/metabolismo , Ácido Ursólico
18.
Sci Rep ; 7(1): 1857, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28500295

RESUMEN

Tardive dyskinesia (TD) is a serious motor side effect that may appear after long-term treatment with neuroleptics and mostly mediated by dopamine D2 receptors (D2Rs). Striatal D2R functioning may be finely regulated by either adenosine A2A receptor (A2AR) or angiotensin receptor type 1 (AT1R) through putative receptor heteromers. Here, we examined whether A2AR and AT1R may oligomerize in the striatum to synergistically modulate dopaminergic transmission. First, by using bioluminescence resonance energy transfer, we demonstrated a physical AT1R-A2AR interaction in cultured cells. Interestingly, by protein-protein docking and molecular dynamics simulations, we described that a stable heterotetrameric interaction may exist between AT1R and A2AR bound to antagonists (i.e. losartan and istradefylline, respectively). Accordingly, we subsequently ascertained the existence of AT1R/A2AR heteromers in the striatum by proximity ligation in situ assay. Finally, we took advantage of a TD animal model, namely the reserpine-induced vacuous chewing movement (VCM), to evaluate a novel multimodal pharmacological TD treatment approach based on targeting the AT1R/A2AR complex. Thus, reserpinized mice were co-treated with sub-effective losartan and istradefylline doses, which prompted a synergistic reduction in VCM. Overall, our results demonstrated the existence of striatal AT1R/A2AR oligomers with potential usefulness for the therapeutic management of TD.


Asunto(s)
Multimerización de Proteína , Receptor de Adenosina A2A/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Antagonistas del Receptor de Adenosina A2/química , Antagonistas del Receptor de Adenosina A2/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/química , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Células Cultivadas , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica , Receptor de Adenosina A2A/química , Receptor de Angiotensina Tipo 1/química , Discinesia Tardía/tratamiento farmacológico , Discinesia Tardía/metabolismo
20.
Behav Brain Res ; 316: 74-81, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27566183

RESUMEN

Previous studies have demonstrated that targeting bradykinin receptors is a promising strategy to counteract the cognitive impairment related with aging and Alzheimer's disease (AD). The hippocampus is critical for cognition, and abnormalities in this brain region are linked to the decline in mental ability. Nevertheless, the impact of bradykinin signaling on hippocampal function is unknown. Therefore, we sought to determine the role of hippocampal bradykinin receptors B1R and B2R on the cognitive decline of middle-aged rats. Twelve-month-old rats exhibited impaired ability to acquire and retrieve spatial information in the Morris water maze task. A single intra-hippocampal injection of the selective B1R antagonist des-Arg9-[Leu8]-bradykinin (DALBK, 3 nmol), but not the selective B2R antagonist D-Arg-[Hyp3,Thi5,D-Tic7,Oic8]-BK (Hoe 140, 3 nmol), reversed the spatial learning and memory deficits on these animals. However, both drugs did not affect the cognitive function in 3-month-old rats, suggesting absence of nootropic properties. Molecular biology analysis revealed an up-regulation of B1R expression in the hippocampal CA1 sub-region and in the pre-frontal cortex of 12-month-old rats, whereas no changes in the B2R expression were observed in middle-aged rats. These findings provide new evidence that inappropriate hippocampal B1R expression and activation exert a critical role on the spatial learning and memory deficits in middle-aged rats. Therefore, selective B1R antagonists, especially orally active non-peptide antagonists, may represent drugs of potential interest to counteract the age-related cognitive decline.


Asunto(s)
Hipocampo/metabolismo , Trastornos de la Memoria/patología , Receptor de Bradiquinina B1/metabolismo , Aprendizaje Espacial/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Animales , Bradiquinina/análogos & derivados , Bradiquinina/farmacología , Antagonistas del Receptor de Bradiquinina B1/farmacología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Ratas , Ratas Wistar , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA