Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Pharmaceutics ; 15(1)2023 Jan 04.
Article En | MEDLINE | ID: mdl-36678806

The iron oxide nanoparticles coated with different surface coatings were studied and characterized by multiple physicochemical and biological methods. The present paper aims at estimating the toxicity in vitro and in vivo of dextran coated iron oxide aqueous magnetic fluids. The in vitro studies were conducted by quantifying the viability of HeLa cells after their incubation with the samples (concentrations of 62.5−125−250−500 µg/mL at different time intervals). The estimation of the toxicity in vivo of administering dextran coated iron oxide aqueous magnetic fluids (DIO-AMF) with hydrodynamic diameter of 25.73 ± 4 nm to Male Brown Norway rats has been made. Different concentrations (62.5−125−250−500 µg/mL) of dextran coated iron oxide aqueous magnetic fluids were administered for 7 consecutive days. Hematology and biochemistry of the Male Brown Norway rats assessment was performed at various time intervals (24−72 h and 21−28 days) after intra-peritoneal injection. The results showed that high concentrations of DIO-AMF (250 and 500 µg/mL) significantly increased white blood cells, red blood cells, hemoglobin and hematocrit compared to the values obtained for the control group (p < 0.05). Moreover, following the administration of DIO-AMF, the levels of alkaline phosphatase and aspartate aminotransferase increased compared to the control group (p < 0.05). After DIO-AMF administration, no significant difference was observed in the levels of alanine aminotransferase, gamma-glutamyl transpeptidase, urea and creatinine compared to the control group (p < 0.05). The results of the present study showed that dextran coated iron oxide aqueous magnetic fluids in concentrations lower than 250 µg/mL are reliable for medical and pharmaceutical applications.

2.
Materials (Basel) ; 15(15)2022 Aug 04.
Article En | MEDLINE | ID: mdl-35955308

This is the first report regarding the effect of gamma irradiation on chitosan-coated magnesium-doped hydroxyapatite (xMg = 0.1; 10 MgHApCh) layers prepared by the spin-coating process. The stability of the resulting 10 MgHApCh gel suspension used to obtain the layers has been shown by ultrasound measurements. The presence of magnesium and the effect of the irradiation process on the studied samples were shown by X-ray photoelectron spectroscopy (XPS). The XPS results obtained for irradiated 10 MgHApCh layers suggested that the magnesium and calcium contained in the surface layer are from tricalcium phosphate (TCP; Ca3(PO4)2) and hydroxyapatite (HAp). The XPS analysis has also highlighted that the amount of TCP in the surface layer increased with the irradiation dose. The energy-dispersive X-ray spectroscopy (EDX) evaluation showed that the calcium decreases with the increase in the irradiation dose. In addition, a decrease in crystallinity and crystallite size was highlighted after irradiation. By atomic force microscopy (AFM) we have obtained images suggesting a good homogeneity of the surface of the non-irradiated and irradiated layers. The AFM results were also sustained by the scanning electron microscopy (SEM) images obtained for the studied samples. The effect of gamma-ray doses on the Fourier transform infrared spectroscopy (ATR-FTIR) spectra of 10 MgHApCh composite layers was also evaluated. The in vitro antifungal assays proved that 10 MgHApCh composite layers presented a strong antifungal effect, correlated with the irradiation dose and incubation time. The study of the stability of the 10 MgHApCh gel allowed us to achieve uniform and homogeneous layers that could be used in different biomedical applications.

3.
Materials (Basel) ; 16(1)2022 Dec 27.
Article En | MEDLINE | ID: mdl-36614570

Drinking water contamination has become a worldwide problem due to the highly negative effects that pollutants can have on human organisms and the environment. Hydroxyapatite (HAp) has the appropriate properties for the immobilization of various pollutants, being considered amongst the most cost-effective materials for water decontamination. The main objective of this study was to use synthesized hydroxyapatite for the elimination of Sr2+ ions from contaminated solutions. The hydroxyapatite used in the decontamination process was synthesized in the laboratory using an adapted method. The hydroxyapatite powder (HAp) resulting from the synthesis was analyzed both before and after the elimination of Sr2+ ions from contaminated solutions. The efficiency of the HAp nanoparticles in removing Sr2+ ions from contaminated solution was determined by batch adsorption experiments. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to study the HAp samples before and after the removal of Sr2+ ions. The ability of HAp nanoparticles to eliminate strontium ions from contaminated solutions was established. Moreover, the removal of Sr2+ ions from the contaminated aqueous solutions was highlighted by ultrasound measurements. The value of the stability parameter calculated by ultrasonic measurements after the removal of Sr2+ ions from the contaminated solution was similar to that of double distilled water whose stability was used as reference. The outcomes of the batch experiments and the parameters obtained from Langmuir and Freundlich models indicated that the HAp nanoparticles had a strong affinity for the elimination of Sr2+ ions from polluted solutions. These results emphasized that HAp nanoparticles could be excellent candidates in the development of new technologies for water remediation. More than that, the outcomes of the cytotoxic assays proved that HAp nanoparticles did not induce any noticeable harmful effects against HeLa cells and did not affect their proliferation after 1 day and 7 days of incubation.

4.
Polymers (Basel) ; 13(10)2021 May 17.
Article En | MEDLINE | ID: mdl-34067677

In the present study, a new low-cost bioceramic nanocomposite based on porous hydroxyapatite (HAp) and cetyl trimethyl ammonium bromide (CTAB) as surfactant was successfully obtained by a simple chemical co-precipitation. The composition and structure of the HAp-CTAB were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) spectrometer, and N2 adsorption/desorption analysis. The capacity of HAp-CTAB nanocomposites to remove the lead ions from aqueous solutions was studied by adsorption batch experiments and proved by Langmuir and Freundlich models. The Pb2+ removal efficiency of HAp-CTAB biocomposite was also confirmed by non-destructive ultrasound studies. The cytotoxicity assays showed that the HAp-CTAB nanocomposites did not induce any significant morphological changes of HeLa cells after 24 h of incubation or other toxic effects. Taken together, our results suggests that the obtained porous HAp-CTAB powder could be used for the decontamination of water polluted with heavy metals, such as Pb2+.

...