Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 68
1.
J Clin Virol ; 170: 105622, 2024 02.
Article En | MEDLINE | ID: mdl-38091664

BACKGROUND: SARS-CoV-2 variants of concern (VOC) may result in breakthrough infections (BTIs) in vaccinated individuals. The aim of this study was to investigate the effects of full primary (two-dose) COVID-19 vaccination with wild-type-based SARS-CoV-2 vaccines on symptoms and immunogenicity of SARS-CoV-2 VOC BTIs. METHODS: In a longitudinal multicenter controlled cohort study in Bavaria, Germany, COVID-19 vaccinated and unvaccinated non-hospitalized individuals were prospectively enrolled within 14 days of a PCR-confirmed SARS-CoV-2 infection. Individuals were visited weekly up to 4 times, performing a structured record of medical data and viral load assessment. SARS-CoV-2-specific antibody response was characterized by anti-spike-(S)- and anti-nucleocapsid-(N)-antibody concentrations, anti-S-IgG avidity and neutralization capacity. RESULTS: A total of 300 individuals (212 BTIs, 88 non-BTIs) were included with VOC Alpha or Delta SARS-CoV-2 infections. Full primary COVID-19 vaccination provided a significant effectiveness against five symptoms (relative risk reduction): fever (33 %), cough (21 %), dysgeusia (22 %), dizziness (52 %) and nausea/vomiting (48 %). Full primary vaccinated individuals showed significantly higher 50 % inhibitory concentration (IC50) values against the infecting VOC compared to unvaccinated individuals at week 1 (269 vs. 56, respectively), and weeks 5-7 (1,917 vs. 932, respectively) with significantly higher relative anti-S-IgG avidity (78% vs. 27 % at week 4, respectively). CONCLUSIONS: Full primary COVID-19 vaccination reduced symptom frequencies in non-hospitalized individuals with BTIs and elicited a more rapid and longer lasting neutralization capacity against the infecting VOC compared to unvaccinated individuals. These results support the recommendation to offer at least full primary vaccination to all adults to reduce disease severity caused by immune escape-variants.


COVID-19 Vaccines , COVID-19 , Adult , Humans , COVID-19/prevention & control , Breakthrough Infections , Cohort Studies , Prospective Studies , SARS-CoV-2 , Antibodies, Viral , Immunoglobulin G , Vaccination
2.
Adv Rheumatol ; 63(1): 37, 2023 07 31.
Article En | MEDLINE | ID: mdl-37525265

BACKGROUND: The importance of proinflammatory T-cells and their cytokine production in patients with autoimmune arthritis has been widely described. Due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have come into focus as a potential therapeutic concept. The aim of this study was to investigate the influence of MSCs on the phenotype, cytokine profile, and functionality of naive and non-naive CD4+ T-cells from healthy donors (HD) and patients with autoimmune arthritis under Th17-cytokine polarizing conditions in an explorative way using a transwell system prohibiting any cell-cell-contact. METHODS: Magnetically isolated naive and non-naive CD4+ T-cells were stimulated under Th17-polarizing proinflammatory cytokine conditions in presence and absence of bone marrow derived mesenchymal stromal cells (MSCs). After an incubation period of 6 days, the proportions of the T-cell subpopulations TEMRA (CD45RA+CD27-), memory (CD45RA-CD27+), effector (CD45RA-CD27-) and naive cells (CD45RA+CD27+) were determined. Quantitative immunofluorescence intensity was used as a measure for IL-9, IL-17 and IFN-γ production in each subpopulation. RESULTS: In isolated naive CD4+ T-cells from HD and patients, MSCs suppressed the differentiation of naive towards an effector phenotype while memory and naive cells showed higher percentages in culture with MSCs. In patients, MSCs significantly decreased the proportion of IL-9 and IL-17 producing effector T-cells. MSCs also reduced IFN-γ production in the naive and memory phenotype from HD. CONCLUSION: The results of the study indicate significant immunomodulatory properties of MSCs, as under Th17-polarizing conditions MSCs are still able to control T-cell differentiation and proinflammatory cytokine production in both HD and patients with autoimmune arthritis.


Arthritis , Autoimmune Diseases , Mesenchymal Stem Cells , Humans , Cytokines , Interleukin-9 , Interleukin-17
4.
Sci Rep ; 13(1): 1855, 2023 02 01.
Article En | MEDLINE | ID: mdl-36725967

The signal modelling framework JimenaE simulates dynamically Boolean networks. In contrast to SQUAD, there is systematic and not just heuristic calculation of all system states. These specific features are not present in CellNetAnalyzer and BoolNet. JimenaE is an expert extension of Jimena, with new optimized code, network conversion into different formats, rapid convergence both for system state calculation as well as for all three network centralities. It allows higher accuracy in determining network states and allows to dissect networks and identification of network control type and amount for each protein with high accuracy. Biological examples demonstrate this: (i) High plasticity of mesenchymal stromal cells for differentiation into chondrocytes, osteoblasts and adipocytes and differentiation-specific network control focusses on wnt-, TGF-beta and PPAR-gamma signaling. JimenaE allows to study individual proteins, removal or adding interactions (or autocrine loops) and accurately quantifies effects as well as number of system states. (ii) Dynamical modelling of cell-cell interactions of plant Arapidopsis thaliana against Pseudomonas syringae DC3000: We analyze for the first time the pathogen perspective and its interaction with the host. We next provide a detailed analysis on how plant hormonal regulation stimulates specific proteins and who and which protein has which type and amount of network control including a detailed heatmap of the A.thaliana response distinguishing between two states of the immune response. (iii) In an immune response network of dendritic cells confronted with Aspergillus fumigatus, JimenaE calculates now accurately the specific values for centralities and protein-specific network control including chemokine and pattern recognition receptors.


Proteins , Software , Signal Transduction , Cell Communication , Cell Differentiation
6.
Adv Rheumatol ; 63: 37, 2023. tab, graf
Article En | LILACS-Express | LILACS | ID: biblio-1505593

Abstract Background The importance of proinflammatory T-cells and their cytokine production in patients with autoimmune arthritis has been widely described. Due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have come into focus as a potential therapeutic concept. The aim of this study was to investigate the influence of MSCs on the phenotype, cytokine profile, and functionality of naive and non-naive CD4+ T-cells from healthy donors (HD) and patients with autoimmune arthritis under Th17-cytokine polarizing conditions in an explorative way using a transwell system prohibiting any cell-cell-contact. Methods Magnetically isolated naive and non-naive CD4+ T-cells were stimulated under Th17-polarizing proinflammatory cytokine conditions in presence and absence of bone marrow derived mesenchymal stromal cells (MSCs). After an incubation period of 6 days, the proportions of the T-cell subpopulations TEMRA (CD45RA+CD27−), memory (CD45RA−CD27+), effector (CD45RA−CD27−) and naive cells (CD45RA+CD27+) were determined. Quantitative immunofluorescence intensity was used as a measure for IL-9, IL-17 and IFN-γ production in each subpopulation. Results In isolated naive CD4+ T-cells from HD and patients, MSCs suppressed the differentiation of naive towards an effector phenotype while memory and naive cells showed higher percentages in culture with MSCs. In patients, MSCs significantly decreased the proportion of IL-9 and IL-17 producing effector T-cells. MSCs also reduced IFN-γ production in the naive and memory phenotype from HD. Conclusions The results of the study indicate significant immunomodulatory properties of MSCs, as under Th17-polarizing conditions MSCs are still able to control T-cell differentiation and proinflammatory cytokine production in both HD and patients with autoimmune arthritis.

7.
Front Immunol ; 13: 1026473, 2022.
Article En | MEDLINE | ID: mdl-36582222

SARS-CoV-2 vaccine breakthrough infections frequently occurred even before the emergence of Omicron variants. Yet, relatively little is known about the impact of vaccination on SARS-CoV-2-specific T cell and antibody response dynamics upon breakthrough infection. We have therefore studied the dynamics of CD4 and CD8 T cells targeting the vaccine-encoded Spike and the non-encoded Nucleocapsid antigens during breakthrough infections (BTI, n=24) and in unvaccinated control infections (non-BTI, n=30). Subjects with vaccine breakthrough infection had significantly higher CD4 and CD8 T cell responses targeting the vaccine-encoded Spike during the first and third/fourth week after PCR diagnosis compared to non-vaccinated controls, respectively. In contrast, CD4 T cells targeting the non-vaccine encoded Nucleocapsid antigen were of significantly lower magnitude in BTI as compared to non-BTI. Hence, previous vaccination was linked to enhanced T cell responses targeting the vaccine-encoded Spike antigen, while responses against the non-vaccine encoded Nucleocapsid antigen were significantly attenuated.


COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , Nucleocapsid
8.
Nat Commun ; 13(1): 2560, 2022 05 10.
Article En | MEDLINE | ID: mdl-35538074

Different scenarios explaining the emergence of novel variants of concern (VOC) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported, including their evolution in scarcely monitored populations, in animals as alternative hosts, or in immunocompromised individuals. Here we report SARS-CoV-2 immune escape mutations over a period of seven months in an immunocompromised patient with prolonged viral shedding. Signs of infection, viral shedding and mutation events are periodically analyzed using RT-PCR and next-generation sequencing based on naso-pharyngeal swabs, with the results complemented by immunological diagnostics to determine humoral and T cell immune responses. Throughout the infection course, 17 non-synonymous intra-host mutations are noted, with 15 (88.2%) having been previously described as prominent immune escape mutations (S:E484K, S:D950N, S:P681H, S:N501Y, S:del(9), N:S235F and S:H655Y) in VOCs. The high frequency of these non-synonymous mutations is consistent with multiple events of convergent evolution. Thus, our results suggest that specific mutations in the SARS-CoV-2 genome may represent positions with a fitness advantage, and may serve as targets in future vaccine and therapeutics development for COVID-19.


COVID-19 , SARS-CoV-2 , Animals , Immunocompromised Host , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
9.
Pediatr Rheumatol Online J ; 20(1): 26, 2022 Apr 11.
Article En | MEDLINE | ID: mdl-35410224

BACKGROUND: The plasticity of T helper-17 (Th17) and regulatory T (Treg) cells may be a clue to pathogenesis of Juvenile Idiopathic Arthritis (JIA). It is still unclear, whether targeted suppression of Interleukin (IL)-17 is able to influence regulatory function of Treg to control pro-inflammatory effectors in JIA. This study aimed to assess the effect of a Th17-stimulating cytokine environment and of IL-17A-inhibition on phenotype plasticity and suppressive function of Treg derived from JIA patients. METHODS: Th17 and Treg characteristics of CD4+ helper T cells were investigated in blood samples of JIA patients with oligo- and polyarticular pattern and healthy controls (HC). Isolated CD4+CD25+CD127- cells defined as Treg were cultivated with Th17-inducing cytokine environment as well as with IL-17A-inhibitors and analyzed for plasticity of phenotype by flow cytometry. Furthermore, inhibitory function of Treg on autologous effectors after cultivation with these stimuli was determined by suppression assays. RESULTS: Our findings demonstrated significantly elevated proportions of Th17 and Th17-like Treg in JIA compared to HC. After incubation with Th17-inducing stimuli, increased FoxP3 expression in separated Treg in JIA and an impaired suppressive capacity in JIA and HC were found. Blockade of IL-17A resulted in adjustment of FoxP3-expression in JIA to proportions found in controls and in regular suppressive function. CONCLUSIONS: Our results demonstrate an induction of FoxP3 expressing Treg by Th17-inducing cytokines with concomitant mitigated suppressive function. In contrast, specific IL-17A blockade maintains suppressive Treg function and adjusted FoxP3-expression in JIA to levels found in controls. These findings may help to provide experimental evidence for the successful clinical use of IL-17A inhibition in JIA patients.


Arthritis, Juvenile , T-Lymphocytes, Regulatory , Arthritis, Juvenile/metabolism , Cytokines/metabolism , Forkhead Transcription Factors/metabolism , Humans , Interleukin-17 , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology , Th17 Cells
10.
Nat Med ; 28(3): 496-503, 2022 03.
Article En | MEDLINE | ID: mdl-35090165

Infection-neutralizing antibody responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 vaccination are an essential component of antiviral immunity. Antibody-mediated protection is challenged by the emergence of SARS-CoV-2 variants of concern (VoCs) with immune escape properties, such as omicron (B.1.1.529), which is rapidly spreading worldwide. Here we report neutralizing antibody dynamics in a longitudinal cohort of coronavirus disease 2019 convalescent and infection-naive individuals vaccinated with mRNA BNT162b2 by quantifying SARS-CoV-2 spike protein antibodies and determining their avidity and neutralization capacity in serum. Using live-virus neutralization assays, we show that a superior infection-neutralizing capacity against all VoCs, including omicron, developed after either two vaccinations in convalescents or a third vaccination or breakthrough infection of twice-vaccinated, naive individuals. These three consecutive spike antigen exposures resulted in an increasing neutralization capacity per anti-spike antibody unit and were paralleled by stepwise increases in antibody avidity. We conclude that an infection-plus-vaccination-induced hybrid immunity or a triple immunization can induce high-quality antibodies with superior neutralization capacity against VoCs, including omicron.


BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination
11.
Transbound Emerg Dis ; 69(3): 1596-1605, 2022 May.
Article En | MEDLINE | ID: mdl-33960696

Knowledge of the level and duration of protective immunity against SARS-CoV-2 after primary infection is of crucial importance for preventive approaches. Currently, there is a lack of evidence on the persistence of specific antibodies. We investigated the generation and maintenance of neutralizing antibodies of convalescent SARS-CoV-2-afflicted patients over a ten-month period post-primary infection using an immunofluorescence assay, a commercial chemiluminescent immunoassay and an in-house enzyme-linked neutralization assay. We present the successful application of an improved version of the plaque-reduction neutralization assay which can be analysed optometrically to simplify data interpretation. Based on the results of the enzyme-linked neutralization assay, neutralizing antibodies were maintained in 77.4% of convalescent individuals without relevant decay over ten months. Furthermore, a positive correlation between severity of infection and antibody titre was observed. In conclusion, SARS-CoV-2-afflicted individuals have been proven to be able to develop and maintain neutralizing antibodies over a period of ten months after primary infection. Findings suggest long-lasting presumably protective humoral immune responses after wild-type infection.


COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/veterinary , Immunity, Humoral
12.
Front Immunol ; 12: 668095, 2021.
Article En | MEDLINE | ID: mdl-33995403

IL-9-producing Th9 cells display a group of helper T cells with similarities to Th17 and Th2 T cells and have been shown to be involved in synovial inflammation in rheumatoid arthritis (RA) patients. So far, it is unclear which parameters drive Th9 differentiation in lymphocytes derived from RA patients compared to immunologically healthy individuals and whether autocrine mechanisms are able to enhance Th9 polarization. Further, parallel pathways of induction of IL-17-producing cells with Th9 phenotype have to be distinguished from exclusively Th9-inductive mechanisms. Thus, the present study aimed to determine the parameters of Th9 induction by simulation in a standardized inflammatory cytokine milieu.Peripheral naive and non-naive T cells of RA patients and healthy donors (HD) were cultured under Th9 and Th17-driving conditions and phenotypically analyzed by flow cytometry and molecular analysis.Our findings indicate a similar differentiation pathway of Th9 and Th17 cells and similar distributions of IL-9+ T cells in RA and HD regardless of Th9- or Th17-promoting cytokine milieus. Whereas the magnitude and direction of Th9- or Th17-polarization was about the same in RA and HD, IL-17+ CD4+ T cells were significantly stimulated by Th17-inducing conditions in HD. In conclusion, the results indicate that Th9- and Th17-inducing cytokine conditions mimicking autoimmune inflammation in RA may have similar stimulatory effects regarding polarization of peripheral naive and non-naive T cells into Th9 or Th17 cells. The results suggest that the differentiation of Th9 cells may be also induced by Th17-driving conditions.


Arthritis, Rheumatoid/immunology , Interleukin-9/metabolism , Lymphocyte Activation , T-Lymphocytes, Helper-Inducer/immunology , Adult , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/genetics , Autoimmunity , Case-Control Studies , Cell Differentiation , Cell Proliferation , Cells, Cultured , Female , Flow Cytometry , Humans , Immunophenotyping , Interleukin-9/genetics , Male , Middle Aged , Phenotype , Signal Transduction , T-Lymphocytes, Helper-Inducer/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism
13.
Int J Mol Sci ; 22(5)2021 Mar 05.
Article En | MEDLINE | ID: mdl-33807854

We observed substantial differences in predicted Major Histocompatibility Complex II (MHCII) epitope presentation of SARS-CoV-2 proteins for different populations but only minor differences in predicted MHCI epitope presentation. A comparison of this predicted epitope MHC-coverage revealed for the early phase of infection spread (till day 15 after reaching 128 observed infection cases) highly significant negative correlations with the case fatality rate. Specifically, this was observed in different populations for MHC class II presentation of the viral spike protein (p-value: 0.0733 for linear regression), the envelope protein (p-value: 0.023), and the membrane protein (p-value: 0.00053), indicating that the high case fatality rates of COVID-19 observed in some countries seem to be related with poor MHC class II presentation and hence weak adaptive immune response against these viral envelope proteins. Our results highlight the general importance of the SARS-CoV-2 structural proteins in immunological control in early infection spread looking at a global census in various countries and taking case fatality rate into account. Other factors such as health system and control measures become more important after the early spread. Our study should encourage further studies on MHCII alleles as potential risk factors in COVID-19 including assessment of local populations and specific allele distributions.


COVID-19/mortality , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , SARS-CoV-2/chemistry , Viral Structural Proteins/chemistry , Adaptive Immunity , Alleles , COVID-19/immunology , COVID-19/transmission , Computational Biology/methods , Correlation of Data , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , HLA Antigens/genetics , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Mortality , SARS-CoV-2/immunology , Viral Structural Proteins/immunology
14.
ALTEX ; 38(2): 289-306, 2020 12 11.
Article En | MEDLINE | ID: mdl-33313956

High attrition rates associated with drug testing in 2D cell culture and animal models stress the need for improved modeling of human tumor tissues. In previous studies, our 3D models on a decellularized tissue matrix have shown better predictivity and higher chemoresistance. A single porcine intestine yields material for 150 3D models of breast, lung, colorectal cancer (CRC) or leukemia. The uniquely preserved structure of the basement membrane enables physiological anchorage of endothelial cells and epithelial-derived carcinoma cells. The matrix provides different niches for cell growth: on top as monolayer, in crypts as aggregates, and within deeper layers. Dynamic culture in bioreactors enhances cell growth. Comparing gene expression between 2D and 3D cultures, we observed changes related to proliferation, apoptosis and stemness. For drug target predictions, we utilize tumor-specific sequencing data in our in silico model, finding an additive effect of metformin and gefitinib treatment for lung cancer in silico, validated in vitro. To analyze mode-of-action, immune therapies such as trispecific T-cell engagers in leukemia or toxicity on non-cancer cells, the model can be modularly enriched with human endothelial cells (hECs), immune cells and fibroblasts. Upon addition of hECs, transmigration of immune cells through the endothelial barrier can be investigated. In an allogenic CRC model, we observe a lower basic apoptosis rate after applying PBMCs in 3D compared to 2D, which offers new options to mirror antigen-specific immunotherapies in vitro. In conclusion, we present modular human 3D tumor models with tissue-like features for preclinical testing to reduce animal experiments.

15.
Vaccine ; 38(50): 8024-8031, 2020 11 25.
Article En | MEDLINE | ID: mdl-33160754

BACKGROUND AND AIMS: Children with inflammatory bowel disease (IBD) and autoimmune hepatitis (AIH) receiving immunosuppressive treatment are at risk for severe varicella zoster virus (VZV)-induced disease. This study evaluated vaccination of susceptible patients with stable disease and documented immunoreactivity without interruption of their current immunosuppression (IS). METHODS: This prospective multicentre observational study used a prevaccination checklist to select patients with low-intensity and high-intensity IS for VZV vaccination. Tolerability and safety after immunization were assessed by questionnaire. The immune response was measured by the VZV-IgG concentration, relative avidity index (RAI), and specific lymphocyte proliferative response. RESULTS: A total of 29 VZV vaccinations were performed in 17 seronegative patients aged 3-16 years (IBD n = 15, AIH n = 2). Eight patients received high-intensity immunosuppression, another six low-intensity immunosuppression, and three patients interrupted IS before VZV vaccination. All 29 vaccinations were well tolerated; only minor side effects such as fever and abdominal pain, were reported in two patients. One patient experienced a flare of Crohn's disease the day after vaccination. The VZV-IgG-concentration increased significantly (p = 0.018) after vaccination, and a specific lymphocyte response towards VZV in vitro was detected in all tested patients which correlated with the RAI (r = 0.489; p = 0.078). CONCLUSIONS: VZV vaccination was well tolerated, safe and immunogenic in children receiving ongoing IS due to IBD and AIH. Ensuring immunoreactivity by clinical and laboratory parameters, rather than the type and dosage of IS, is a reasonable approach to decide on live-attenuated virus vaccinations in immunosuppressed children (German clinical trials DRKS00016357).


Chickenpox , Hepatitis, Autoimmune , Herpes Zoster , Inflammatory Bowel Diseases , Adolescent , Antibodies, Viral , Child , Child, Preschool , Herpes Zoster/prevention & control , Herpesvirus 3, Human , Humans , Prospective Studies , Vaccination
16.
Pediatr Rheumatol Online J ; 18(1): 17, 2020 Feb 17.
Article En | MEDLINE | ID: mdl-32066461

BACKGROUND: Rare autoinflammatory diseases (AIDs) including Cryopyrin-Associated Periodic Syndrome (CAPS), Tumor Necrosis Receptor-Associated Periodic Syndrome (TRAPS) and Mevalonate Kinase Deficiency Syndrome (MKD)/ Hyper-IgD Syndrome (HIDS) are genetically defined and characterized by recurrent fever episodes and inflammatory organ manifestations. Early diagnosis and early start of effective therapies control the inflammation and prevent organ damage. The PRO-KIND initiative of the German Society of Pediatric Rheumatology (GKJR) aims to harmonize the diagnosis and management of children with rheumatic diseases nationally. The task of the PRO-KIND CAPS/TRAPS/MKD/HIDS working group was to develop evidence-based, consensus diagnosis and management protocols including the first AID treat-to-target strategies. METHODS: The national CAPS/TRAPS/MKD/HIDS expert working group was established, defined its aims and conducted a comprehensive literature review synthesising the recent (2013 to 2018) published evidence including all available recommendations for diagnosis and management. General and disease-specific statements were anchored in the 2015 SHARE recommendations. An iterative expert review process discussed, adapted and refined these statements. Ultimately the GKJR membership vetted the proposed consensus statements, agreement of 80% was mandatory for inclusion. The approved statements were integrated into three disease specific consensus treatment plans (CTPs). These were developed to enable the implementation of evidence-based, standardized care into clinical practice. RESULTS: The CAPS/TRAPS/MKD/HIDS expert working group of 12 German and Austrian paediatric rheumatologists completed the evidence synthesis and modified a total of 38 statements based on the SHARE recommendation framework. In iterative reviews 36 reached the mandatory agreement threshold of 80% in the final GKJR member survey. These included 9 overarching principles and 27 disease-specific statements (7 for CAPS, 11 TRAPS, 9 MKD/HIDS). A diagnostic algorithm was established based on the synthesized evidence. Statements were integrated into diagnosis- and disease activity specific treat-to-target CTPs for CAPS, TRAPS and MKD/HIDS. CONCLUSIONS: The PRO-KIND CAPS/TRAPS/MKD/HIDS working group established the first evidence-based, actionable treat-to-target consensus treatment plans for three rare hereditary autoinflammatory diseases. These provide a path to a rapid evaluation, effective control of disease activity and tailored adjustment of therapies. Their implementation will decrease variation in care and optimize health outcomes for children with AID.


Antirheumatic Agents/therapeutic use , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/drug therapy , Patient Care Planning , Antibodies, Monoclonal, Humanized/therapeutic use , Cryopyrin-Associated Periodic Syndromes/diagnosis , Cryopyrin-Associated Periodic Syndromes/drug therapy , Etanercept/therapeutic use , Evidence-Based Medicine , Germany , Humans , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Mevalonate Kinase Deficiency/diagnosis , Mevalonate Kinase Deficiency/drug therapy , Rheumatology
17.
Eur J Dermatol ; 29(5): 468-476, 2019 Oct 01.
Article En | MEDLINE | ID: mdl-31789272

Systemic sclerosis (SSc) is a predominantly T-cell-mediated autoimmune disorder with a characteristic sequence of Th1 and Th2 inflammation resulting in fibrosis. The contribution of differentiated memory T-cell subpopulations and methylation of CpG regions of Th1- or Th2-specific transcription factor genes on the inflammatory cytokine signature in SSc is not well understood. The study aimed to investigate phenotypic differentiation, the cytokine signature, sensitivity of memory T cells to in vitro suppression by autologous regulatory T cells (Tregs), and methylation of Th1- and Th2-specific transcription factor genes in patients with limited (lcSSc) and diffuse cutaneous SSc (dcSSc) compared to healthy donors (HD). Phenotype/intracellular cytokine production and methylation of Th1- and Th2-specific transcription factor genes were determined by flow cytometry and epigenetic analysis, respectively, and compared between patients with lcSSc, dcSSc and HD. Discrimination of CD4+ T cells that lack CCR7 expression revealed that CCR7- CD4+ memory T cells and effectors are producers of intracellular TNFα, IL-13 and IL-4, particularly in dcSSc. A proportional increase in CCR7- memory T cells was demonstrated by SSc-derived CD4+ T-cells after insufficient suppression by Tregs. A higher level of methylation of GATA3 or STAT4 (Th2- and Th1-specific transcription factor genes, respectively) was observed in dcSSc. An abundance of specific CD4+ memory T-cell subpopulations strongly contributes to the production of pro-inflammatory cytokines in dcSSc. Our results suggest that therapeutic concepts should focus more intensively on the memory phenotype to control T cell-mediated inflammation in SSc patients.


CD4-Positive T-Lymphocytes/immunology , Cytokines/biosynthesis , Receptors, CCR7/genetics , Scleroderma, Systemic/immunology , CpG Islands/genetics , DNA Methylation , GATA3 Transcription Factor/genetics , Gene Expression , Humans , Leukocyte Common Antigens/immunology , Lymphopenia/immunology , STAT4 Transcription Factor/genetics , Scleroderma, Systemic/genetics , Scleroderma, Systemic/metabolism , T-Box Domain Proteins/genetics , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Th2 Cells/immunology
18.
Rheumatology (Oxford) ; 58(11): 2051-2060, 2019 11 01.
Article En | MEDLINE | ID: mdl-31106368

OBJECTIVE: RA is a chronic inflammatory disease characterized by lymphocyte infiltration and release of inflammatory cytokines. Previous studies have shown that treatment with Janus kinase inhibitors, such as tofacitinib, increased the incidence rate of herpes zoster compared with conventional DMARDs. Therefore, this study aimed to investigate the effect of tofacitinib on the varicella-zoster-virus (VZV)-specific T cell immune response. METHODS: The effect of tofacitinib on the VZV-specific T cell immune response was determined by evaluating the IFNγ production, the proliferative capacity, the VZV-induced differentiation into effector and memory T cells, the expression of activation marker CD69 and helper T cell type 1 (Th1)-characteristic chemokine receptors, such as CXCR3 and CCR5, as well as cytotoxic activity (perforin and granzyme B expression) of CD4+ T cells of patients with RA compared with healthy donors upon stimulation with VZV antigen in vitro. RESULTS: Tofacitinib significantly reduced the IFNγ production, proliferation, activation, and CXCR3 expression of VZV-specific CD4+ T cells in a dose-dependent manner in short- and long-term lymphocyte culture. No effect on the distribution of naive, effectors or memory, or on the expression of perforin or granzyme B by VZV-specific CD4+ T cells was observed. CONCLUSION: This study showed that tofacitinib significantly modulated the Th1 response to VZV. The poor VZV-specific cellular immune response in patients with RA may be considered in recommendations regarding appropriate vaccination strategies for enhancing the VZV-specific Th1 response.


Arthritis, Rheumatoid/drug therapy , CD4-Positive T-Lymphocytes/immunology , Herpesvirus 3, Human/immunology , Immunity, Cellular/drug effects , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/virology , CD4-Positive T-Lymphocytes/virology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Humans , Interferon-gamma/metabolism , Lectins, C-Type/metabolism , Receptors, CCR5 , Receptors, CXCR3/metabolism , Th1 Cells/immunology
19.
Article En | MEDLINE | ID: mdl-31139362

Background: Increasing bacterial resistance to antibiotics is a serious problem worldwide. We sought to record the acquisition of antibiotic-resistant Escherichia coli (E. coli) in healthy infants in Northern Thailand and investigated potential determinants. Methods: Stool samples from 142 infants after birth, at ages 2wk, 2mo, 4 to 6mo, and 1y, and parent stool samples were screened for E. coli resistance to tetracycline, ampicillin, co-trimoxazole, and cefazoline by culture, and isolates were further investigated for multiresistance by disc diffusion method. Pulsed-field gel electrophoresis was performed to identify persistent and transmitted strains. Genetic comparison of resistant and transmitted strains was done by multilocus sequence typing (MLST) and strains were further investigated for extra- and intra-intestinal virulence factors by multiplex PCR. Results: Forty-seven (33%) neonatal meconium samples contained resistant E. coli. Prevalence increased continuously: After 1y, resistance proportion (tetracycline 80%, ampicillin 72%, co-trimoxazole 66%, cefazoline 35%) almost matched those in parents. In 8 infants (6%), identical E. coli strains were found in at least 3 sampling time points (suggesting persistence). Transmission of resistant E. coli from parents to child was observed in only 8 families. MLST showed high diversity. We could not identify any virulence genes or factors associated with persistence, or transmission of resistant E. coli. Full-term, vaginal birth and birth in rural hospital were identified as risk factors for early childhood colonization with resistant E. coli. Conclusion: One third of healthy Thai neonates harboured antibiotic-resistant E. coli in meconium. The proportion of resistant E. coli increased during the first year of life almost reaching the value in adults. We hypothesize that enhancement of infection control measures and cautious use of antibiotics may help to control further increase of resistance.


Drug Resistance, Multiple, Bacterial , Escherichia coli Infections/microbiology , Escherichia coli/drug effects , Escherichia coli/genetics , Intestines/microbiology , Adult , Anti-Bacterial Agents/pharmacology , Bacterial Typing Techniques , Electrophoresis, Gel, Pulsed-Field , Escherichia coli Infections/transmission , Feces/microbiology , Female , Genotype , Healthy Volunteers , Humans , Infant , Infant, Newborn , Male , Microbial Sensitivity Tests , Multilocus Sequence Typing , Parents , Prospective Studies , Thailand , Virulence , Virulence Factors/genetics
20.
Head Face Med ; 14(1): 15, 2018 Sep 17.
Article En | MEDLINE | ID: mdl-30223858

BACKGROUND: Juvenile idiopathic arthritis (JIA) is often accompanied by pathomorphological changes to the temporomandibular joint (TMJ). By analyzing orthodontical orthopantomograms of JIA patients the aims of the study were a) classification of condyle changes, b) quantification of bony asymmetries of condylar destruction and c) detection of relationships between disease duration and TMJ-involvement. PATIENTS/METHODS: 46 caucasian JIA-patients (28 female; 18 male; < 16.0 years) were enrolled, each joint (n = 92) was morphologically assessed by means of orthopantomogram, quantitatively analysed and compared with duration of general disease. Condyle morphology was assessed using the Billiau scale for severity of destruction [1]. The quantitative analysis was based on ratios of condyle, ramus and mandible height. RESULTS: Patients were divided into groups (Group I - slightly affected, n = 36; Billiau severity 0-2; condyle findings: X-ray normal, condyle erosions, condylar flattening; Group II - severely affected, N = 10; Billiau severity 3-4; condyle findings: condylar flattenings and erosions, unilateral/bilateral complete loss of condyles), based on morphological analysis of condylar destruction. Duration of disease was significantly longer in Group II (8.9 ± 5.2 years) than in Group I (4.6 ± 4.7 years). Asymmetries of condyle, ramus and mandible height, quantitatively analysed by contralateral comparison, were significantly more marked in patients of Group II than of Group I. CONCLUSIONS: Orthopantomogram imaging can be used in orthodontics clinical routine to detect TMJ-pathologies and is an important reference for monitoring progression of JIA. Classification into severe and slightly affected TMJ is possible by analysis of condylar pathomorphology. An association between degree of destruction, extent of lower jaw asymmetry and disease duration is suggested by the results.


Arthritis, Juvenile/diagnostic imaging , Arthritis, Juvenile/epidemiology , Early Diagnosis , Radiography, Panoramic/methods , Temporomandibular Joint Disorders/diagnostic imaging , Temporomandibular Joint Disorders/epidemiology , Adolescent , Age Distribution , Arthritis, Juvenile/physiopathology , Child , Cohort Studies , Comorbidity , Female , Humans , Male , Prevalence , Prognosis , Prospective Studies , Risk Assessment , Severity of Illness Index , Sex Distribution , Temporomandibular Joint Disorders/physiopathology , Young Adult
...