Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155832

RESUMEN

BACKGROUND: Cauliflower (Brassica oleracea L.) and globe artichoke (Cynara scolymus L.) are vegetables with a high waste index mainly related to stems and leaves. In this study, enzymatic hydrolysates obtained from these wastes were proposed to be used as plant biostimulants. Life cycle assessment methodology was also applied to evaluate environmental performances related to cauliflower and artichoke byproducts. RESULTS: Hydrolysates (HYs) were chemically and biologically characterized. Amino acids, organic acids, amines, polyols, mineral elements, phenols, tannins, flavonoids and sulfur compounds were identified and quantified by means of NMR, inductively coupled plasma mass spectrometry and UV-visible analyses. Cauliflower leaf and flower HYs showed the highest concentration of free amino acids, whereas stems showed the highest concentration of Ca. Regarding artichoke, asparagine, glutamine and aspartic acid were exclusively detected in stems, whereas artichoke leaves showed the highest Mg and Mn levels together with the highest antioxidant activity. The HYs diluted in water were tested as biostimulants. The impacts of five concentrations of HYs (0.00, 0.28, 0.84, 2.52 and 7.56 g L-1) on seed germination and early seedling growth of crimson clover, alfalfa, durum wheat and corn were investigated. CONCLUSIONS: The application of artichoke biostimulant (0.28 g L-1) positively influenced the coefficient of velocity of germination in alfalfa, crimson clover and durum wheat, whereas cauliflower biostimulant significantly improved corn germination speed. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Sci Total Environ ; 947: 174420, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38971249

RESUMEN

Excess Food Energy Intake (EFEI), namely Metabolic Food Waste (MFW) corresponds to excess calorie intake related to overconsumption of food and is responsible for overweight (OW) and obesity (OB) conditions. Identifying its causes and impacts could be important, so that it can be prevented and reduced, generating health, environmental and societal benefits. Therefore, this research quantifies MFW among OW and OB adult populations (18-75 years) in Italy and its environmental and social implications. Life cycle assessment (LCA) through the Simapro 9.5 software was used and then, the results were monetized according to the Environmental Price Handbook to understand the real environmental cost. Finally, Social LCA (S-LCA) was considered following the Product Social Impact Assessment (PSILCA) guidelines to understand the potential social risks behind the food that ends up on our plates. The results highlight the amount of MFW in Italy is 2696 billion kcal/year corresponding to 1.59 Mtons over-consumed food/year, while the impacts are mainly related to global warming (8.78 Mtons CO2 eq/year, or 2.29 % of the total Italian CO2 emissions), terrestrial ecotoxicity (843,451 tons 1.4-DCB/year), freshwater ecotoxicity (222,483 tons 1.4 DCB eq/year), and land consumption (8 million m2a eq/year), mostly due to the meat, fats and oils and sweets overconsumption. Impacts monetization also shows that MFW could induce an environmental price of € 1340/per capita/year, and finally, the S-LCA reveals how overconsumption of food has the potential to affect gender discrimination, water depletion, trade union, and social discrimination due to the high proportion of labor migrants in the agricultural sector.


Asunto(s)
Hipernutrición , Italia , Humanos , Hipernutrición/epidemiología , Adulto , Ambiente , Adolescente , Persona de Mediana Edad , Obesidad/epidemiología , Adulto Joven , Alimento Perdido y Desperdiciado
3.
Artículo en Inglés | MEDLINE | ID: mdl-36981970

RESUMEN

Wheat is the third most cultivated cereal in the world and represents the major contributor to human nutrition. Milling wheat by-products such as husks (17-20% of the total processing output weight), even if still containing high-value-added bioactive compounds, are often left untreated or unused, thus resulting in environmental and human health burdens. In these regards, the present study is aimed at evaluating in a multimethodological approach the nutraceutical properties of durum wheat husks belonging to the ancient cultivar "Senatore Cappelli", thus assessing their potential as bioactive compound sources in terms of phytochemical, cytotoxic, and nutraceutical properties. By means of HPLC-FD analyses, wheat husk samples analyzed revealed a higher content of serotonin, amounting to 35% of the total BAs, and were confirmed to occur at biogenic amines quality index (BAQI) values <10 mg/100 g. In addition, spectrophotometric assays showed a significant variable content in the phenolic (189.71-351.14 mg GAE/100 g) and antioxidant compounds (31.23-37.84 mg TE/100 g) within the wheat husk samples analyzed, according to the different cultivar areas of origin. Considering wheat husk extracts' anti-inflammatory and antioxidant activity, in vitro analyses were performed on BV-2 murine microglia cells cultured in the presence or absence of LPS, thus evaluating their ability to promote microglia polarization towards an anti-inflammatory phenotype. Cytotoxicity assays showed that wheat extracts do not affect microglia viability. Wheat husks activity on microglial polarization was assessed by analyzing the expression of M1 and M2 markers' mRNA by RT-PCR. Wheat husk antioxidant activity was assessed by analysis of NRF2 and SOD1 mRNA expression. Moreover, the sustainability assessment for the recovery of bioactive components from wheat by-products was carried out by applying the life cycle assessment (LCA) methodology using SimaPro v9.2.2. software.


Asunto(s)
Antioxidantes , Triticum , Humanos , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/química , Triticum/química , Suplementos Dietéticos/análisis , Fenoles/análisis , ARN Mensajero
4.
Foods ; 11(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36429250

RESUMEN

In this study, the effect of several agronomical practices on the chemical composition of hemp inflorescences, a potential novel food that needs to be further studied, was observed. Here, the case study of inflorescences from Ferimon cultivars is discussed and submitted to different agronomical practices (irrigation and fertilizers) in different years, and the inflorescences harvested in different periods were analyzed by a multimethodological approach. Targeted and untargeted methodologies allowed cannabinoids, total phenolic content, metabolite profile and antioxidant activity to be determined. The biomass and inflorescence yields were also reported. The whole data set was submitted to ANOVA-simultaneous component analysis. The statistic results allowed us to observe that irrigation was responsible for the (-)-Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) increment. THC, cannabichromene (CBC), cannabigerol (CBG), succinate, and fructose resulted as higher in full female flowering than in the period of seed maturity. On the other hand, nitrogen supplementation led to an increase of iso-leucine, valine, and threonine. The obtained results underlined both the potential food application of hemp inflorescences, due to the rich chemical profile, and the strong effect of agronomical practices, mainly irrigation and harvesting, on the qualitative and quantitative characteristics of its metabolite profile.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36231575

RESUMEN

The transition toward more sustainable food systems, which already represents a central element of the European Farm to Fork and Green Deal strategies, could be an effective measure to contribute to global decarbonization and greenhouse gas (GHGs) reduction goals; concurrently, it could improve the health status and nutrition of the global population. In this context, the Mediterranean diet (MD) could play a considerable role, as it is generally recognized as a more balanced, healthy, and sustainable eating pattern than Western consumption patterns, which are characterized by excess food and high energy content, thus causing undesirable effects on both human health and the environment. Although traditionally linked to MD, Italy sees relatively moderate adherence by its citizens, as they consume about +75% of the daily caloric intake recommended by MD. Therefore, this study aims to quantitatively assess the potential environmental, economic, and health impacts of this lower adherence to MD by Italians. Current Italian Food Patterns (CIFP) in 2019 were analyzed and compared to the MD recommended amounts through a Life Cycle Thinking (LCT) approach (LCA) and carbon footprint (CF) analysis. The results show that CIFP, compared to MD, has +133% greater impacts on the environmental macro-area, +100% greater impacts on the human health macro-area, and +59% greater impacts on the economic macro-area (with annual fossil and mineral resource savings of $53.35 per person, $3.2 billion per year). The analysis also shows that CIFP has a CF of 6.54 × 101 kg CO2 eq, +142% over MD (2.7 × 101 kg CO2 eq), resulting in a lower environmental impact of the Mediterranean diet.


Asunto(s)
Dieta Mediterránea , Gases de Efecto Invernadero , Animales , Dióxido de Carbono , Huella de Carbono , Dieta , Conducta Alimentaria , Humanos , Italia , Estadios del Ciclo de Vida
6.
Foods ; 10(10)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34681489

RESUMEN

A multidisciplinary protocol is proposed to monitor the preservation of fresh pumpkin samples (FP) using three commercial polymeric films: A made of biodegradable cellophane from regenerated cellulose pulp; B from corn starch, cassava and eucalyptus, C made of polylactic acid from corn starch, and a polyethylene film used as reference (REF). Chemical, mechanical and microbiological analyses were applied on packaging and fresh and packaged samples at different times. After an 11-day period, NMR spectroscopy results showed a sucrose increase and a malic acid decrease in all the biofilms with respect to FP; fructose, glucose, galactose levels remained quite constant in biofilms B and C; the most abundant amino acids remained quite constant in biofilm A and decreased significantly in biofilm B. From microbiological analyses total microbial count was below the threshold value up to 7 days for samples in all the films, and 11 days for biofilm C. The lactic acid bacteria, and yeasts and molds counts were below the acceptability limit during the 11 days for all packages. In the case of biofilm C, the most promising packaging for microbiological point of view, aroma analysis was also carried out. In this paper, you can find all the analysis performed and all the values found.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA