Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 66
1.
iScience ; 27(3): 109257, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38439962

Whole genome sequencing of bacteria is important to enable strain classification. Using entire genomes as an input to machine learning (ML) models would allow rapid classification of strains while using information from multiple genetic elements. We developed a "bag-of-words" approach to encode, using SentencePiece or k-mer tokenization, entire bacterial genomes and analyze these with ML. Initial model selection identified SentencePiece with 8,000 and 32,000 words as the best approach for genome tokenization. We then classified in Neisseria meningitidis genomes the capsule B group genotype with 99.6% accuracy and the multifactor invasive phenotype with 90.2% accuracy, in an independent test set. Subsequently, in silico knockouts of 2,808 genes confirmed that the ML model predictions aligned with our current understanding of the underlying biology. To our knowledge, this is the first ML method using entire bacterial genomes to classify strains and identify genes considered relevant by the classifier.

2.
PLoS Comput Biol ; 18(5): e1009531, 2022 05.
Article En | MEDLINE | ID: mdl-35507580

Schizophrenia is a debilitating psychiatric disorder, leading to both physical and social morbidity. Worldwide 1% of the population is struggling with the disease, with 100,000 new cases annually only in the United States. Despite its importance, the goal of finding effective treatments for schizophrenia remains a challenging task, and previous work conducted expensive large-scale phenotypic screens. This work investigates the benefits of Machine Learning for graphs to optimize drug phenotypic screens and predict compounds that mitigate abnormal brain reduction induced by excessive glial phagocytic activity in schizophrenia subjects. Given a compound and its concentration as input, we propose a method that predicts a score associated with three possible compound effects, i.e., reduce, increase, or not influence phagocytosis. We leverage a high-throughput screening to prove experimentally that our method achieves good generalization capabilities. The screening involves 2218 compounds at five different concentrations. Then, we analyze the usability of our approach in a practical setting, i.e., prioritizing the selection of compounds in the SWEETLEAD library. We provide a list of 64 compounds from the library that have the most potential clinical utility for glial phagocytosis mitigation. Lastly, we propose a novel approach to computationally validate their utility as possible therapies for schizophrenia.


Drug Repositioning , Schizophrenia , Astrocytes , Humans , Machine Learning , Neuronal Plasticity , Schizophrenia/drug therapy
3.
Front Immunol ; 12: 738388, 2021.
Article En | MEDLINE | ID: mdl-34557200

RNA vaccines represent a milestone in the history of vaccinology. They provide several advantages over more traditional approaches to vaccine development, showing strong immunogenicity and an overall favorable safety profile. While preclinical testing has provided some key insights on how RNA vaccines interact with the innate immune system, their mechanism of action appears to be fragmented amid the literature, making it difficult to formulate new hypotheses to be tested in clinical settings and ultimately improve this technology platform. Here, we propose a systems biology approach, based on the combination of literature mining and mechanistic graphical modeling, to consolidate existing knowledge around mRNA vaccines mode of action and enhance the translatability of preclinical hypotheses into clinical evidence. A Natural Language Processing (NLP) pipeline for automated knowledge extraction retrieved key biological evidences that were joined into an interactive mechanistic graphical model representing the chain of immune events induced by mRNA vaccines administration. The achieved mechanistic graphical model will help the design of future experiments, foster the generation of new hypotheses and set the basis for the development of mathematical models capable of simulating and predicting the immune response to mRNA vaccines.


Computer Graphics , Data Mining , Models, Immunological , Natural Language Processing , Systems Biology , Translational Research, Biomedical , Vaccine Development , mRNA Vaccines/therapeutic use , Animals , Humans , Knowledge Bases , mRNA Vaccines/adverse effects , mRNA Vaccines/immunology
4.
Commun Biol ; 4(1): 1022, 2021 09 01.
Article En | MEDLINE | ID: mdl-34471226

Mathematical models have grown in size and complexity becoming often computationally intractable. In sensitivity analysis and optimization phases, critical for tuning, validation and qualification, these models may be run thousands of times. Scientific programming languages popular for prototyping, such as MATLAB and R, can be a bottleneck in terms of performance. Here we show a compiler-based approach, designed to be universal at handling engineering and life sciences modeling styles, that automatically translates models into fast C code. At first QSPcc is demonstrated to be crucial in enabling the research on otherwise intractable Quantitative Systems Pharmacology models, such as in rare Lysosomal Storage Disorders. To demonstrate the full value in seamlessly accelerating, or enabling, the R&D efforts in natural sciences, we then benchmark QSPcc against 8 solutions on 24 real-world projects from different scientific fields. With speed-ups of 22000x peak, and 1605x arithmetic mean, our results show consistent superior performances.


Computational Biology/instrumentation , Computer Simulation , Models, Biological , Programming Languages , Humans
5.
Sci Rep ; 11(1): 18464, 2021 09 16.
Article En | MEDLINE | ID: mdl-34531473

With the outbreak of COVID-19 exerting a strong pressure on hospitals and health facilities, clinical decision support systems based on predictive models can help to effectively improve the management of the pandemic. We present a method for predicting mortality for COVID-19 patients. Starting from a large number of clinical variables, we select six of them with largest predictive power, using a feature selection method based on genetic algorithms and starting from a set of COVID-19 patients from the first wave. The algorithm is designed to reduce the impact of missing values in the set of variables measured, and consider only variables that show good accuracy on validation data. The final predictive model provides accuracy larger than 85% on test data, including a new patient cohort from the second COVID-19 wave, and on patients with imputed missing values. The selected clinical variables are confirmed to be relevant by recent literature on COVID-19.


COVID-19/mortality , Algorithms , Cohort Studies , Decision Support Systems, Clinical , Humans , Machine Learning , Models, Theoretical , Mortality
6.
Curr Opin Biotechnol ; 70: 7-14, 2021 08.
Article En | MEDLINE | ID: mdl-33038781

Computational methods are becoming more and more essential to elucidate biological systems. Many different approaches exist with pros and cons. This paper reviews the most useful technologies focusing on nutrient metabolism and metabolic disorders. Space limitation prevents from exploring the examples in details, but pointers to the relevant papers are reported.


Metabolic Diseases , Humans , Nutrients
7.
Bioinformatics ; 37(9): 1269-1277, 2021 06 09.
Article En | MEDLINE | ID: mdl-33225350

MOTIVATION: Precision medicine is a promising field that proposes, in contrast to a one-size-fits-all approach, the tailoring of medical decisions, treatments or products. In this context, it is crucial to introduce innovative methods to stratify a population of patients on the basis of an accurate system-level knowledge of the disease. This is particularly important in very challenging conditions, where the use of standard statistical methods can be prevented by poor data availability or by the need of oversimplifying the processes regulating a complex disease. RESULTS: We define an innovative method for phenotype classification that combines experimental data and a mathematical description of the disease biology. The methodology exploits the mathematical model for inferring additional subject features relevant for the classification. Finally, the algorithm identifies the optimal number of clusters and classifies the samples on the basis of a subset of the features estimated during the model fit. We tested the algorithm in two test cases: an in silico case in the context of dyslipidemia, a complex disease for which a large population of patients has been generated, and a clinical test case, in the context of a lysosomal rare disorder, for which the amount of available data was limited. In both the scenarios, our methodology proved to be accurate and robust, and allowed the inference of an additional phenotype division that the experimental data did not show. AVAILABILITY AND IMPLEMENTATION: The code to reproduce the in silico results has been implemented in MATLAB v.2017b and it is available in the Supplementary Material. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Algorithms , Precision Medicine , Cluster Analysis , Computational Biology , Computer Simulation , Humans , Phenotype
8.
Genes Nutr ; 15(1): 21, 2020 Nov 26.
Article En | MEDLINE | ID: mdl-33243154

BACKGROUND: Increased adipogenesis and altered adipocyte function contribute to the development of obesity and associated comorbidities. Fructose modified adipocyte metabolism compared to glucose, but the regulatory mechanisms and consequences for obesity are unknown. Genome-wide methylation and global transcriptomics in SGBS pre-adipocytes exposed to 0, 2.5, 5, and 10 mM fructose, added to a 5-mM glucose-containing medium, were analyzed at 0, 24, 48, 96, 192, and 384 h following the induction of adipogenesis. RESULTS: Time-dependent changes in DNA methylation compared to baseline (0 h) occurred during the final maturation of adipocytes, between 192 and 384 h. Larger percentages (0.1% at 192 h, 3.2% at 384 h) of differentially methylated regions (DMRs) were found in adipocytes differentiated in the glucose-containing control media compared to adipocytes differentiated in fructose-supplemented media (0.0006% for 10 mM, 0.001% for 5 mM, and 0.005% for 2.5 mM at 384 h). A total of 1437 DMRs were identified in 5237 differentially expressed genes at 384 h post-induction in glucose-containing (5 mM) control media. The majority of them inversely correlated with the gene expression, but 666 regions were positively correlated to the gene expression. CONCLUSIONS: Our studies demonstrate that DNA methylation regulates or marks the transformation of morphologically differentiating adipocytes (seen at 192 h), to the more mature and metabolically robust adipocytes (as seen at 384 h) in a genome-wide manner. Lower (2.5 mM) concentrations of fructose have the most robust effects on methylation compared to higher concentrations (5 and 10 mM), suggesting that fructose may be playing a signaling/regulatory role at lower concentrations of fructose and as a substrate at higher concentrations.

9.
Brief Bioinform ; 21(2): 527-540, 2020 03 23.
Article En | MEDLINE | ID: mdl-30753281

With the recent rising application of mathematical models in the field of computational systems biology, the interest in sensitivity analysis methods had increased. The stochastic approach, based on chemical master equations, and the deterministic approach, based on ordinary differential equations (ODEs), are the two main approaches for analyzing mathematical models of biochemical systems. In this work, the performance of these approaches to compute sensitivity coefficients is explored in situations where stochastic and deterministic simulation can potentially provide different results (systems with unstable steady states, oscillators with population extinction and bistable systems). We consider two methods in the deterministic approach, namely the direct differential method and the finite difference method, and five methods in the stochastic approach, namely the Girsanov transformation, the independent random number method, the common random number method, the coupled finite difference method and the rejection-based finite difference method. The reviewed methods are compared in terms of sensitivity values and computational time to identify differences in outcome that can highlight conditions in which one approach performs better than the other.


Computational Biology/methods , Stochastic Processes , Algorithms , Models, Theoretical , Systems Biology
10.
Nat Commun ; 10(1): 5215, 2019 11 18.
Article En | MEDLINE | ID: mdl-31740673

Metabolic syndrome is a pathological condition characterized by obesity, hyperglycemia, hypertension, elevated levels of triglycerides and low levels of high-density lipoprotein cholesterol that increase cardiovascular disease risk and type 2 diabetes. Although numerous predisposing genetic risk factors have been identified, the biological mechanisms underlying this complex phenotype are not fully elucidated. Here we introduce a systems biology approach based on network analysis to investigate deregulated biological processes and subsequently identify drug repurposing candidates. A proximity score describing the interaction between drugs and pathways is defined by combining topological and functional similarities. The results of this computational framework highlight a prominent role of the immune system in metabolic syndrome and suggest a potential use of the BTK inhibitor ibrutinib as a novel pharmacological treatment. An experimental validation using a high fat diet-induced obesity model in zebrafish larvae shows the effectiveness of ibrutinib in lowering the inflammatory load due to macrophage accumulation.


Gene Regulatory Networks , Metabolic Syndrome/genetics , Pharmaceutical Preparations/metabolism , Signal Transduction/genetics , Adenine/analogs & derivatives , Animals , Diet, High-Fat , Drug Repositioning , Gene Regulatory Networks/drug effects , Humans , Lipid Metabolism/drug effects , Macrophages/drug effects , Macrophages/metabolism , Metabolic Syndrome/drug therapy , Organ Specificity/genetics , Piperidines , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Reproducibility of Results , Zebrafish/metabolism
11.
Sci Rep ; 9(1): 15172, 2019 10 23.
Article En | MEDLINE | ID: mdl-31645610

We present a new model of ESR1 network regulation based on analysis of Doxorubicin, Estradiol, and TNFα combination treatment in MCF-7. We used Doxorubicin as a therapeutic agent, TNFα as marker and mediator of an inflammatory microenvironment and 17ß-Estradiol (E2) as an agonist of Estrogen Receptors, known predisposing factor for hormone-driven breast cancer, whose pharmacological inhibition reduces the risk of breast cancer recurrence. Based on the results of transcriptomics analysis, we found 71 differentially expressed genes that are specific for the combination treatment with Doxorubicin + Estradiol + TNFα in comparison with single or double treatments. The responsiveness to the triple treatment was examined for seven genes by qPCR, of which six were validated, and then extended to four additional cell lines differing for p53 and/or ER status. The results of differential regulation enrichment analysis highlight the role of the ESR1 network that included 36 of 71 specific differentially expressed genes. We propose that the combined activation of p53 and NF-kB transcription factors significantly influences ligand-dependent, ER-driven transcriptional responses, also of the ESR1 gene itself. These results provide a model of coordinated interaction of TFs to explain the Doxorubicin, E2 and TNFα induced repression mechanisms.


Breast Neoplasms/drug therapy , Doxorubicin/therapeutic use , Estradiol/therapeutic use , Tumor Necrosis Factor-alpha/therapeutic use , Breast Neoplasms/genetics , Cell Line, Tumor , Doxorubicin/pharmacology , Estradiol/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Humans , Models, Biological , Reproducibility of Results , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/pharmacology
12.
Wiley Interdiscip Rev Syst Biol Med ; 11(6): e1459, 2019 11.
Article En | MEDLINE | ID: mdl-31260191

Nowadays, mathematical modeling is playing a key role in many different research fields. In the context of system biology, mathematical models and their associated computer simulations constitute essential tools of investigation. Among the others, they provide a way to systematically analyze systems perturbations, develop hypotheses to guide the design of new experimental tests, and ultimately assess the suitability of specific molecules as novel therapeutic targets. To these purposes, stochastic simulation algorithms (SSAs) have been introduced for numerically simulating the time evolution of a well-stirred chemically reacting system by taking proper account of the randomness inherent in such a system. In this work, we review the main SSAs that have been introduced in the context of exact, approximate, and hybrid stochastic simulation. Specifically, we will introduce the direct method (DM), the first reaction method (FRM), the next reaction method (NRM) and the rejection-based SSA (RSSA) in the area of exact stochastic simulation. We will then present the τ-leaping method and the chemical Langevin method in the area of approximate stochastic simulation and an implementation of the hybrid RSSA (HRSSA) in the context of hybrid stochastic-deterministic simulation. Finally, we will consider the model of the sphingolipid metabolism to provide an example of application of SSA to computational system biology by exemplifying how different simulation strategies may unveil different insights into the investigated biological phenomenon. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Analytical and Computational Methods > Computational Methods.


Algorithms , Systems Biology/methods , Animals , Ceramides/metabolism , Computer Simulation , Humans , Models, Biological , Sphingolipids/metabolism
13.
Sci Rep ; 9(1): 3965, 2019 03 08.
Article En | MEDLINE | ID: mdl-30850634

Evidence is accumulating that the main chronic diseases of aging Alzheimer's disease (AD) and type-2 diabetes mellitus (T2DM) share common pathophysiological mechanisms. This study aimed at applying systems biology approaches to increase the knowledge of the shared molecular pathways underpinnings of AD and T2DM. We analysed transcriptomic data of post-mortem AD and T2DM human brains to obtain disease signatures of AD and T2DM and combined them with protein-protein interaction information to construct two disease-specific networks. The overlapping AD/T2DM network proteins were then used to extract the most representative Gene Ontology biological process terms. The expression of genes identified as relevant was studied in two AD models, 3xTg-AD and ApoE3/ApoE4 targeted replacement mice. The present transcriptomic data analysis revealed a principal role for autophagy in the molecular basis of both AD and T2DM. Our experimental validation in mouse AD models confirmed the role of autophagy-related genes. Among modulated genes, Cyclin-Dependent Kinase Inhibitor 1B, Autophagy Related 16-Like 2, and insulin were highlighted. In conclusion, the present investigation revealed autophagy as the central dys-regulated pathway in highly co-morbid diseases such as AD and T2DM allowing the identification of specific genes potentially involved in disease pathophysiology which could become novel targets for therapeutic intervention.


Alzheimer Disease/pathology , Autophagy/physiology , Diabetes Mellitus, Type 2/pathology , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Brain/pathology , Comorbidity , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Humans , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Transcriptome/physiology
14.
Sci Rep ; 9(1): 4322, 2019 03 13.
Article En | MEDLINE | ID: mdl-30867454

In folate-mediated one-carbon metabolism (FOCM), 5-formyltetrahydrofolate (5fTHF), a one-carbon substituted tetrahydrofolate (THF) vitamer, acts as an intracellular storage form of folate and as an inhibitor of the folate-dependent enzymes phosphoribosylaminoimidazolecarboxamide formyltransferase (AICARFT) and serine hydroxymethyltransferase (SHMT). Cellular levels of 5fTHF are regulated by a futile cycle comprising the enzymes SHMT and 5,10-methenyltetrahydrofolate synthetase (MTHFS). MTHFS is an essential gene in mice; however, the roles of both 5fTHF and MTHFS in mammalian FOCM remain to be fully elucidated. We present an extension of our previously published hybrid-stochastic model of FOCM by including the 5fTHF futile-cycle to explore its effect on the FOCM network. Model simulations indicate that MTHFS plays an essential role in preventing 5fTHF accumulation, which consequently averts inhibition of all other reactions in the metabolic network. Moreover, in silico experiments show that 10-formylTHF inhibition of MTHFS is critical for regulating purine synthesis. Model simulations also provide evidence that 5-methylTHF (and not 5fTHF) is the predominant physiological binder/inhibitor of SHMT. Finally, the model simulations indicate that the 5fTHF futile cycle dampens the stochastic noise in FOCM that results from both folate deficiency and a common variant in the methylenetetrahydrofolate reductase (MTHFR) gene.


Carbon/metabolism , Folic Acid/metabolism , Leucovorin/metabolism , Substrate Cycling , Tetrahydrofolates/metabolism , Animals , Computer Simulation , Humans , Metabolic Networks and Pathways , Mice , Stochastic Processes
16.
Brief Bioinform ; 20(4): 1269-1279, 2019 07 19.
Article En | MEDLINE | ID: mdl-29272335

With the recent developments in the field of multi-omics integration, the interest in factors such as data preprocessing, choice of the integration method and the number of different omics considered had increased. In this work, the impact of these factors is explored when solving the problem of sample classification, by comparing the performances of five unsupervised algorithms: Multiple Canonical Correlation Analysis, Multiple Co-Inertia Analysis, Multiple Factor Analysis, Joint and Individual Variation Explained and Similarity Network Fusion. These methods were applied to three real data sets taken from literature and several ad hoc simulated scenarios to discuss classification performance in different conditions of noise and signal strength across the data types. The impact of experimental design, feature selection and parameter training has been also evaluated to unravel important conditions that can affect the accuracy of the result.


Computational Biology/methods , Systems Integration , Unsupervised Machine Learning , Algorithms , Animals , Cluster Analysis , Computer Simulation , Databases, Factual , Factor Analysis, Statistical , Genomics/statistics & numerical data , Humans , Metabolomics/statistics & numerical data , Mice , Models, Biological , Multivariate Analysis , Proteomics/statistics & numerical data , Systems Biology , Unsupervised Machine Learning/statistics & numerical data
17.
NPJ Syst Biol Appl ; 4: 37, 2018.
Article En | MEDLINE | ID: mdl-30245847

Most cellular processes are regulated by groups of proteins interacting together to form protein complexes. Protein compositions vary between different tissues or disease conditions enabling or preventing certain protein-protein interactions and resulting in variations in the complexome. Quantitative and qualitative characterization of context-specific protein complexes will help to better understand context-dependent variations in the physiological behavior of cells. Here, we present SiComPre 1.0, a computational tool that predicts context-specific protein complexes by integrating multi-omics sources. SiComPre outperforms other protein complex prediction tools in qualitative predictions and is unique in giving quantitative predictions on the complexome depending on the specific interactions and protein abundances defined by the user. We provide tutorials and examples on the complexome prediction of common model organisms, various human tissues and how the complexome is affected by drug treatment.

18.
Microbiome ; 6(1): 171, 2018 09 21.
Article En | MEDLINE | ID: mdl-30241567

BACKGROUND: Weaning is a period of marked physiological change. The introduction of solid foods and the changes in milk consumption are accompanied by significant gastrointestinal, immune, developmental, and microbial adaptations. Defining a reduced number of infections as the desired health benefit for infants around weaning, we identified in silico (i.e., by advanced public domain mining) infant gut microbes as potential deliverers of this benefit. We then investigated the requirements of these bacteria for exogenous metabolites as potential prebiotic feeds that were subsequently searched for in the natural product space. RESULTS: Using public domain literature mining and an in silico reverse metabolic approach, we constructed probiotic-prebiotic-food associations, which can guide targeted feeding of immune health-beneficial microbes by weaning food; analyzed competition and synergy for (prebiotic) nutrients between selected microbes; and translated this information into designing an experimental complementary feed for infants enrolled in a pilot clinical trial ( http://www.nourishtoflourish.auckland.ac.nz/ ). CONCLUSIONS: In this study, we applied a benefit-oriented microbiome research strategy for enhanced early-life immune health. We extended from "classical" to molecular nutrition aiming to identify nutrients, bacteria, and mechanisms that point towards targeted feeding to improve immune health in infants around weaning. Here, we present the systems biology-based approach we used to inform us on the most promising prebiotic combinations known to support growth of beneficial gut bacteria ("probiotics") in the infant gut, thereby favorably promoting development of the immune system.


Bacteria/isolation & purification , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Immune System/immunology , Metabolomics/methods , Prebiotics/analysis , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Computer Simulation , Feeding Behavior , Female , Gastrointestinal Tract/immunology , Humans , Infant , Infant Food/analysis , Infant Health , Male , Prebiotics/administration & dosage , Weaning
19.
PLoS One ; 13(3): e0194225, 2018.
Article En | MEDLINE | ID: mdl-29529088

Although the genetic basis of Duchenne muscular dystrophy has been known for almost thirty years, the cellular and molecular mechanisms characterizing the disease are not completely understood and an efficacious treatment remains to be developed. In this study we analyzed proteomics data obtained with the SomaLogic technology from blood serum of a cohort of patients and matched healthy subjects. We developed a workflow based on biomarker identification and network-based pathway analysis that allowed us to describe different deregulated pathways. In addition to muscle-related functions, we identified other biological processes such as apoptosis, signaling in the immune system and neurotrophin signaling as significantly modulated in patients compared with controls. Moreover, our network-based analysis identified the involvement of FoxO transcription factors as putative regulators of different pathways. On the whole, this study provided a global view of the molecular processes involved in Duchenne muscular dystrophy that are decipherable from serum proteome.


Muscular Dystrophy, Duchenne/metabolism , Protein Interaction Mapping , Protein Interaction Maps , Proteome , Proteomics , Case-Control Studies , Female , Gene Expression Regulation , Humans , Male , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Proteomics/methods , Signal Transduction , Workflow
20.
J Chem Phys ; 148(6): 064111, 2018 Feb 14.
Article En | MEDLINE | ID: mdl-29448774

The stochastic simulation algorithm (SSA) has been widely used for simulating biochemical reaction networks. SSA is able to capture the inherently intrinsic noise of the biological system, which is due to the discreteness of species population and to the randomness of their reciprocal interactions. However, SSA does not consider other sources of heterogeneity in biochemical reaction systems, which are referred to as extrinsic noise. Here, we extend two simulation approaches, namely, the integration-based method and the rejection-based method, to take extrinsic noise into account by allowing the reaction propensities to vary in time and state dependent manner. For both methods, new efficient implementations are introduced and their efficiency and applicability to biological models are investigated. Our numerical results suggest that the rejection-based method performs better than the integration-based method when the extrinsic noise is considered.


Algorithms , Biochemical Phenomena , Models, Biological , Stochastic Processes , Computer Simulation
...