Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 14(10): 1434-1440, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37849558

RESUMEN

The SARS-CoV-2 main protease (Mpro) has been proven to be a highly effective target for therapeutic intervention, yet only one drug currently holds FDA approval status for this target. We were inspired by a series of publications emanating from the Jorgensen and Anderson groups describing the design of potent, non-peptidic, competitive SARS-CoV-2 Mpro inhibitors, and we saw an opportunity to make several design modifications to improve the overall pharmacokinetic profile of these compounds without losing potency. To this end, we created a focused virtual library using reaction-based enumeration tools in the Schrödinger suite. These compounds were docked into the Mpro active site and subsequently prioritized for synthesis based upon relative binding affinity values calculated by FEP+. Fourteen compounds were selected, synthesized, and evaluated both biochemically and in cell culture. Several of the synthesized compounds proved to be potent, competitive Mpro inhibitors with improved metabolic stability profiles.

2.
ACS Pharmacol Transl Sci ; 6(5): 702-709, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37200809

RESUMEN

5-Fluorouracil and 5-fluorouracil-based prodrugs have been used clinically for decades to treat cancer. Their anticancer effects are most prominently ascribed to inhibition of thymidylate synthase (TS) by metabolite 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP). However, 5-fluorouracil and FdUMP are subject to numerous unfavorable metabolic events that can drive undesired systemic toxicity. Our previous research on antiviral nucleotides suggested that substitution at the nucleoside 5'-carbon imposes conformational restrictions on the corresponding nucleoside monophosphates, rendering them poor substrates for productive intracellular conversion to viral polymerase-inhibiting triphosphate metabolites. Accordingly, we hypothesized that 5'-substituted analogs of FdUMP, which is uniquely active at the monophosphate stage, would inhibit TS while preventing undesirable metabolism. Free energy perturbation-derived relative binding energy calculations suggested that 5'(R)-CH3 and 5'(S)-CF3 FdUMP analogs would maintain TS potency. Herein, we report our computational design strategy, synthesis of 5'-substituted FdUMP analogs, and pharmacological assessment of TS inhibitory activity.

3.
Front Pharmacol ; 13: 1083284, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686712

RESUMEN

Nucleoside- and nucleotide-based therapeutics are indispensable treatment options for patients suffering from malignant and viral diseases. These agents are most commonly administered to patients as prodrugs to maximize bioavailability and efficacy. While the literature provides a practical prodrug playbook to facilitate the delivery of nucleoside and nucleotide therapeutics, small context-dependent amendments to these popular prodrug strategies can drive dramatic improvements in pharmacokinetic (PK) profiles. Herein we offer a brief overview of current prodrug strategies, as well as a case study involving the fine-tuning of lipid prodrugs of acyclic nucleoside phosphonate tenofovir (TFV), an approved nucleotide HIV reverse transcriptase inhibitor (NtRTI) and the cornerstone of combination antiretroviral therapy (cART). Installation of novel lipid terminal motifs significantly reduced fatty acid hepatic ω-oxidation while maintaining potent antiviral activity. This work contributes important insights to the expanding repertoire of lipid prodrug strategies in general, but particularly for the delivery and distribution of acyclic nucleoside phosphonates.

4.
J Med Chem ; 64(17): 12917-12937, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34459598

RESUMEN

Tenofovir (TFV) is the cornerstone nucleotide reverse transcriptase inhibitor (NtRTI) in many combination antiretroviral therapies prescribed to patients living with HIV/AIDS. Due to poor cell permeability and oral bioavailability, TFV is administered as one of two FDA-approved prodrugs, both of which metabolize prematurely in the liver and/or plasma. This premature prodrug processing depletes significant fractions of each oral dose and causes toxicity in kidney, bone, and liver with chronic administration. Although TFV exalidex (TXL), a phospholipid-derived prodrug of TFV, was designed to address this issue, clinical pharmacokinetic studies indicated substantial hepatic extraction, redirecting clinical development of TXL toward HBV. To circumvent this metabolic liability, we synthesized and evaluated ω-functionalized TXL analogues with dramatically improved hepatic stability. This effort led to the identification of compounds 21 and 23, which exhibited substantially longer t1/2 values than TXL in human liver microsomes, potent anti-HIV activity in vitro, and enhanced pharmacokinetic properties in vivo.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Profármacos , Tenofovir/metabolismo , Tenofovir/farmacología , Animales , Área Bajo la Curva , Infecciones por VIH , Semivida , Humanos , Hígado/metabolismo , Ratones , Estructura Molecular , Oxidación-Reducción , Tenofovir/química
5.
ACS Infect Dis ; 6(5): 922-929, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32275393

RESUMEN

A series of five benzimidazole-based compounds were identified using a machine learning algorithm as potential inhibitors of the respiratory syncytial virus (RSV) fusion protein. These compounds were synthesized, and compound 2 in particular exhibited excellent in vitro potency with an EC50 value of 5 nM. This new scaffold was then further refined leading to the identification of compound 44, which exhibited a 10-fold improvement in activity with an EC50 value of 0.5 nM.


Asunto(s)
Antivirales , Bencimidazoles/farmacología , Virus Sincitial Respiratorio Humano , Proteínas Virales de Fusión/antagonistas & inhibidores , Antivirales/farmacología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Relación Estructura-Actividad
6.
ACS Med Chem Lett ; 10(2): 196-202, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30783503

RESUMEN

Since the discovery of HIV as the etiological agent of AIDS, the virus has infected millions of people each year. Fortunately, with the use of HAART, viremia can be suppressed to below detectable levels in the infected individuals, which significantly improves their quality of life and prevents the onset of AIDS. However, HAART is not curative and issues relating to adherence and drug resistance may lead to the re-emergence of viremia, the development of AIDS, and ultimately death. To address a pressing need for the development of new and efficacious antiretroviral agents with activity against viruses bearing prevalent resistant mutations, we have designed two generations of benzimidazolone derivatives as HIV non-nucleoside reverse transcriptase inhibitors. The first generation benzimidazolone inhibitors were found to be potent inhibitors of wild-type HIV reverse transcriptase but were ineffective in the presence of common resistance mutations such as K103N and Y181C. A second generation benzimidazolone inhibitor (compound 42) not only showed inhibitory activity against wild-type HIV but also remained active against HIV containing the K103N, Y181C, and K103N/Y181C drug resistance mutations.

7.
Bioorg Med Chem Lett ; 26(15): 3700-4, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27287366

RESUMEN

The development of novel anti-HIV agents remains an important medicinal chemistry challenge given that no cure for the disease is imminent, and the continued use of current NNRTIs inevitably leads to problems associated with resistance. Inspired by the pyrazole-containing NNRTI lersivirine (LSV), we embarked upon a study to establish whether 1,2,3-triazole heterocycles could be used as a new scaffold for the creation of novel NNRTIs. An especially attractive feature of triazoles used for this purpose is the versatility in accessing variously functionalised systems using either the thermally regulated Huisgen cycloaddition, or the related 'click' reaction. Employing three alternative forms of these reactions, we were able to synthesise a range of triazole compounds and evaluate their efficacy in a phenotypic HIV assay. To our astonishment, even compounds closely mimicking LSV were only moderately effective against HIV.


Asunto(s)
Fármacos Anti-VIH/farmacología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH/efectos de los fármacos , Inhibidores de la Transcriptasa Inversa/farmacología , Triazoles/farmacología , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Química Clic , Ciclización , Relación Dosis-Respuesta a Droga , Transcriptasa Inversa del VIH/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/química , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química
8.
Bioorg Med Chem Lett ; 26(6): 1580-1584, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26876929

RESUMEN

In a previous communication we described a series of indole based NNRTIs which were potent inhibitors of HIV replication, both for the wild type and K103N strains of the virus. However, the methyl ether functionality on these compounds, which was crucial for potency, was susceptible to acid promoted indole assisted SN1 substitution. This particular problem did not bode well for an orally bioavailable drug. Here we describe bioisosteric replacement of this problematic functional group, leading to a series of compounds which are potent inhibitors of HIV replication, and are acid stable.


Asunto(s)
Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH/efectos de los fármacos , VIH/enzimología , Indoles/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología , Sulfuros/farmacología , Relación Dosis-Respuesta a Droga , Transcriptasa Inversa del VIH/metabolismo , Indoles/síntesis química , Indoles/química , Modelos Moleculares , Estructura Molecular , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/química , Relación Estructura-Actividad , Sulfuros/síntesis química , Sulfuros/química , Replicación Viral/efectos de los fármacos
9.
Bioorg Med Chem Lett ; 24(18): 4376-4380, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25176191

RESUMEN

The human immunodeficiency virus (HIV) pandemic remains a significant problem, especially in developing nations where the social and economic impacts are severe. Until a cure or vaccine for the disease is found, a constant supply of new compounds to fill the drug development pipeline is a requirement, given the tendency for the virus to rapidly develop resistance to current therapies. Here we disclose our efforts to improve upon the efficacy of cyclopropyl-indole derivatives developed as NNRTIs in our laboratories. To this end, modifications to the functionality occupying the small Val179 pocket have resulted in nearly two orders of magnitude increase in potency.


Asunto(s)
Fármacos Anti-VIH/farmacología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH/efectos de los fármacos , Indoles/química , Inhibidores de la Transcriptasa Inversa/farmacología , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Relación Dosis-Respuesta a Droga , Transcriptasa Inversa del VIH/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...