Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Mol Biol Educ ; 43(4): 245-62, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26148241

RESUMEN

Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry- and research-based could simultaneously impart scientific knowledge and foster a student's research expertise and confidence. We have developed a year-long undergraduate biochemistry laboratory curriculum wherein students determine, via experiment and computation, the function of a protein of known three-dimensional structure. The first half of the course is inquiry-based and modular in design; students learn general biochemical techniques while gaining preparation for research experiments in the second semester. Having learned standard biochemical methods in the first semester, students independently pursue their own (original) research projects in the second semester. This new curriculum has yielded an improvement in student performance and confidence as assessed by various metrics. To disseminate teaching resources to students and instructors alike, a freely accessible Biochemistry Laboratory Education resource is available at http://biochemlab.org.


Asunto(s)
Bioquímica/educación , Enseñanza/métodos , Curriculum , Humanos , Laboratorios , Aprendizaje , Investigación/educación , Estudiantes
2.
Proteins ; 81(4): 568-82, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23161756

RESUMEN

The crystal structure of Ta0880, determined at 1.91 Å resolution, from Thermoplasma acidophilum revealed a dimer with each monomer composed of an α/ß/α sandwich domain and a smaller lid domain. The overall fold belongs to the PfkB family of carbohydrate kinases (a family member of the Ribokinase clan) which include ribokinases, 1-phosphofructokinases, 6-phosphofructo-2-kinase, inosine/guanosine kinases, fructokinases, adenosine kinases, and many more. Based on its general fold, Ta0880 had been annotated as a ribokinase-like protein. Using a coupled pyruvate kinase/lactate dehydrogenase assay, the activity of Ta0880 was assessed against a variety of ribokinase/pfkB-like family substrates; activity was not observed for ribose, fructose-1-phosphate, or fructose-6-phosphate. Based on structural similarity with nucleoside kinases (NK) from Methanocaldococcus jannaschii (MjNK, PDB 2C49, and 2C4E) and Burkholderia thailandensis (BtNK, PDB 3B1O), nucleoside kinase activity was investigated. Ta0880 (TaNK) was confirmed to have nucleoside kinase activity with an apparent KM for guanosine of 0.21 µM and catalytic efficiency of 345,000 M(-1) s(-1) . These three NKs have significantly different substrate, phosphate donor, and cation specificities and comparisons of specificity and structure identified residues likely responsible for the nucleoside substrate selectivity. Phylogenetic analysis identified three clusters within the PfkB family and indicates that TaNK is a member of a new sub-family with broad nucleoside specificities. Proteins 2013. © 2012 Wiley Periodicals, Inc.


Asunto(s)
Fosfotransferasas/química , Fosfotransferasas/metabolismo , Thermoplasma/enzimología , Secuencia de Aminoácidos , Burkholderia/enzimología , Cristalografía por Rayos X , Cinética , Methanococcales/enzimología , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Secundaria de Proteína , Alineación de Secuencia , Especificidad por Sustrato , Thermoplasma/química
3.
Analyst ; 137(11): 2692-8, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-22545263

RESUMEN

Microchip electrophoresis has become a powerful tool for DNA separation, offering all of the advantages typically associated with miniaturized techniques: high speed, high resolution, ease of automation, and great versatility for both routine and research applications. Various substrate materials have been used to produce microchips for DNA separations, including conventional (glass, silicon, and quartz) and alternative (polymers) platforms. In this study, we perform DNA separation in a simple and low-cost polyester-toner (PeT)-based electrophoresis microchip. PeT devices were fabricated by a direct-printing process using a 600 dpi-resolution laser printer. DNA separations were performed on PeT chip with channels filled with polymer solutions (0.5% m/v hydroxyethylcellulose or hydroxypropylcellulose) at electric fields ranging from 100 to 300 V cm(-1). Separation of DNA fragments between 100 and 1000 bp, with good correlation of the size of DNA fragments and mobility, was achieved in this system. Although the mobility increased with increasing electric field, separations showed the same profile regardless of the electric field. The system provided good separation efficiency (215,000 plates per m for the 500 bp fragment) and the separation was completed in 4 min for 1000 bp fragment ladder. The cost of a given chip is approximately $0.15 and it takes less than 10 minutes to prepare a single device.


Asunto(s)
ADN/análisis , Electroforesis por Microchip/métodos , Poliésteres/química , Celulosa/análogos & derivados , Celulosa/química , Electroforesis por Microchip/instrumentación
4.
Anal Chem ; 83(13): 5182-9, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21557576

RESUMEN

A variety of substrates have been used for fabrication of microchips for DNA extraction, PCR amplification, and DNA fragment separation, including the more conventional glass and silicon as well as alternative polymer-based materials. Polyester represents one such polymer, and the laser-printing of toner onto polyester films has been shown to be effective for generating polyester-toner (PeT) microfluidic devices with channel depths on the order of tens of micrometers. Here, we describe a novel and simple process that allows for the production of multilayer, high aspect-ratio PeT microdevices with substantially larger channel depths. This innovative process utilizes a CO(2) laser to create the microchannel in polyester sheets containing a uniform layer of printed toner, and multilayer devices can easily be constructed by sandwiching the channel layer between uncoated cover sheets of polyester containing precut access holes. The process allows the fabrication of deep channels, with ~270 µm, and we demonstrate the effectiveness of multilayer PeT microchips for dynamic solid phase extraction (dSPE) and PCR amplification. With the former, we found that (i) more than 65% of DNA from 0.6 µL of blood was recovered, (ii) the resultant DNA was concentrated to greater than 3 ng/µL (which was better than other chip-based extraction methods), and (iii) the DNA recovered was compatible with downstream microchip-based PCR amplification. Illustrative of the compatibility of PeT microchips with the PCR process, the successful amplification of a 520 bp fragment of λ-phage DNA in a conventional thermocycler is shown. The ability to handle the diverse chemistries associated with DNA purification and extraction is a testimony to the potential utility of PeT microchips beyond separations and presents a promising new disposable platform for genetic analysis that is low cost and easy to fabricate.


Asunto(s)
ADN/aislamiento & purificación , Miniaturización , Poliésteres/química , Reacción en Cadena de la Polimerasa/métodos , ADN/genética
5.
Lab Chip ; 11(9): 1603-11, 2011 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-21380415

RESUMEN

This work describes the performance of poly(methyl methacrylate) (PMMA) microfluidic DNA purification devices with embedded microfabricated posts, functionalized with chitosan. PMMA is attractive as a substrate for creating high surface area (SA) posts for DNA capture because X-ray lithography can be exploited for extremely reproducible fabrication of high SA structures. However, this advantage is offset by the delicate nature of the posts when attempting bonding to create a closed system, and by the challenge of functionalizing the PMMA surface with a group that invokes DNA binding. Methods are described for covalent functionalization of the post surfaces with chitosan that binds DNA in a pH-dependent manner, as well as for bonding methods that avoid damaging the underlying post structure. A number of geometric posts designs are explored, with the goal of identifying post structures that provide the requisite surface area without a concurrent rise in fluidic resistance that promotes device failure. Initial proof-of-principle is shown by recovery of prepurified human genomic DNA (hgDNA), with real-world utility illustrated by purifying hgDNA from whole blood and demonstrating it to be PCR-amplifiable.


Asunto(s)
ADN/aislamiento & purificación , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Polimetil Metacrilato/química , Extracción en Fase Sólida/métodos , Análisis Químico de la Sangre/instrumentación , Análisis Químico de la Sangre/métodos , Quitosano/química , ADN/sangre , Diseño de Equipo , Humanos , Concentración de Iones de Hidrógeno , Propiedades de Superficie
6.
Analyst ; 135(3): 531-7, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20174706

RESUMEN

A novel solid phase extraction technique is described where DNA is bound and eluted from magnetic silica beads in a manner where efficiency is dependent on the magnetic manipulation of the beads and not on the flow of solution through a packed bed. The utility of this technique in the isolation of reasonably pure, PCR-amplifiable DNA from complex samples is shown by isolating DNA from whole human blood, and subsequently amplifying a fragment of the beta-globin gene. By effectively controlling the movement of the solid phase in the presence of a static sample, the issues associated with reproducibly packing a solid phase in a microchannel and maintaining consistent flow rates are eliminated. The technique described here is rapid, simple, and efficient, allowing for recovery of more than 60% of DNA from 0.6 microL of blood at a concentration which is suitable for PCR amplification. In addition, the technique presented here requires inexpensive, common laboratory equipment, making it easily adopted for both clinical point-of-care applications and on-site forensic sample analysis.


Asunto(s)
ADN/aislamiento & purificación , Dióxido de Silicio/química , Extracción en Fase Sólida/métodos , ADN/sangre , Genética Forense , Humanos , Magnetismo , Sistemas de Atención de Punto , Sonicación , Globinas beta/genética
7.
Lab Chip ; 9(17): 2484-94, 2009 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-19680574

RESUMEN

As recently as the early 1990s, DNA purification was time-consuming, requiring the use of toxic, hazardous reagents. The advent of solid phase extraction techniques and the availability of commercial kits for quick and reliable DNA extraction has relegated those early techniques largely to the history books. High quality DNA can now be extracted from whole blood, serum, saliva, urine, stool, cerebral spinal fluid, tissues, and cells in less time without sacrificing recovery. Having achieved such a radical change in the methodology of DNA extraction, focus has shifted to adapting these methods to a miniaturized system, or "lab-on-a-chip" (A. Manz, N. Graber and H. M. Widmer, Sens. Actuators, B, 1990, 1, 244-248). Manz et al.'s concept of a "miniaturized total chemical analysis system" (microTAS) involved a silicon chip that incorporated sample pretreatment, separation and detection. This review will focus on the first of these steps, sample pretreatment in the form of DNA purification. The intention of this review is to provide an overview of the fundamentals of nucleic acid purification and solid phase extraction (SPE) and to discuss specific microchip DNA extraction successes and challenges. In order to fully appreciate the advances in DNA purification, a brief review of the history of DNA extraction is provided so that the reader has an understanding of the impact that the development of SPE techniques have had. This review will highlight the different methods of nucleic acid extraction (Table 1), including relevant citations, but without an exhaustive summary of the literature. A recent review by Wen et al. (J. Wen, L. A. Legendre, J. M. Bienvenue and J. P. Landers, Anal. Chem., 2008, 80, 6472-6479) covers solid phase extraction methods with a greater focus on their incorporation into integrated microfluidic systems.


Asunto(s)
Ácidos Nucleicos/aislamiento & purificación , Análisis de Secuencia por Matrices de Oligonucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...