Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(38): 15490-15501, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37700615

RESUMEN

The aim of this study was the preparation of different amorphous silicon-carbon hybrid thin-layer materials according to the liquid phase deposition (LPD) process using single-source precursors. In our study, 2-methyl-2-silyltrisilane (methylisotetrasilane; 2), 1,1,1-trimethyl-2,2-disilyltrisilane (trimethylsilylisotetrasilane; 3), 2-phenyl-2-silyltrisilane (phenylisotetrasilane; 4), and 1,1,2,2,4,4,5,5-octamethyl-3,3,6,6-tetrasilylcyclohexasilane (cyclohexasilane; 5) were utilized as precursor materials and compared with the parent compound 2,2-disilyltrisilane (neopentasilane; 1). Compounds 2-5 were successfully oligomerized at λ = 365 nm with catalytic amounts of the neopentasilane oligomer (NPO). These oligomeric mixtures (NPO and 6-9) were used for the preparation of thin-layer materials. Optimum solution and spin coating conditions were investigated, and amorphous silicon-carbon films were obtained. All thin-layer materials were characterized via UV/vis spectroscopy, light microscopy, spectroscopic ellipsometry, XPS, SEM, and SEM/EDX. Our results show that the carbon content and especially the bandgap can be easily tuned using these single-source precursors via LPD.

2.
Nano Lett ; 22(6): 2303-2308, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35240778

RESUMEN

Nonadiabatic nano-optical electron tunneling in the transition region between multiphoton-induced emission and adiabatic tunnel emission is explored in the near-field of plasmonic nanostructures. For Keldysh γ values between ∼1.3 and ∼2.2, measured photoemission spectra show strong-field recollision driven by the nanoscale near-field. At the same time, the photoemission yield shows an intensity scaling with a constant nonlinearity, which is characteristic for multiphoton-induced emission. Our observations in this transition region were well reproduced with the numerical solution of Schrödinger's equation, mimicking the nanoscale geometry of the field. This way, we determined the boundaries and nature of nonadiabatic tunneling photoemission, building on a key advantage of a nanoplasmonic system, namely, that high-field-driven recollision events and their signature in the photoemission spectrum can be observed more efficiently due to significant nanoplasmonic field enhancement factors.

3.
Nano Lett ; 17(2): 1181-1186, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28094992

RESUMEN

Probing nanooptical near-fields is a major challenge in plasmonics. Here, we demonstrate an experimental method utilizing ultrafast photoemission from plasmonic nanostructures that is capable of probing the maximum nanoplasmonic field enhancement in any metallic surface environment. Directly measured field enhancement values for various samples are in good agreement with detailed finite-difference time-domain simulations. These results establish ultrafast plasmonic photoelectrons as versatile probes for nanoplasmonic near-fields.


Asunto(s)
Nanopartículas del Metal/química , Campos Electromagnéticos , Fluorescencia , Oro/química , Cinética , Rayos Láser , Espectroscopía de Fotoelectrones , Plata/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...