Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Int J Mol Sci ; 24(22)2023 Nov 07.
Article En | MEDLINE | ID: mdl-38003236

Human leishmaniasis is a neglected tropical disease which affects nearly 1.5 million people every year, with Mexico being an important endemic region. One of the major defense mechanisms of these parasites is based in the polyamine metabolic pathway, as it provides the necessary compounds for its survival. Among the enzymes in this route, trypanothione reductase (TryR), an oxidoreductase enzyme, is crucial for the Leishmania genus' survival against oxidative stress. Thus, it poses as an attractive drug target, yet due to the size and features of its catalytic pocket, modeling techniques such as molecular docking focusing on that region is not convenient. Herein, we present a computational study using several structure-based approaches to assess the druggability of TryR from L. mexicana, the predominant Leishmania species in Mexico, beyond its catalytic site. Using this consensus methodology, three relevant pockets were found, of which the one we call σ-site promises to be the most favorable one. These findings may help the design of new drugs of trypanothione-related diseases.


Antiprotozoal Agents , Leishmania , Leishmaniasis , Humans , Molecular Docking Simulation , Leishmania/metabolism , NADH, NADPH Oxidoreductases/metabolism , Leishmaniasis/parasitology , Antiprotozoal Agents/therapeutic use
2.
J Cheminform ; 14(1): 82, 2022 Dec 02.
Article En | MEDLINE | ID: mdl-36461094

We report the main conclusions of the first Chemoinformatics and Artificial Intelligence Colloquium, Mexico City, June 15-17, 2022. Fifteen lectures were presented during a virtual public event with speakers from industry, academia, and non-for-profit organizations. Twelve hundred and ninety students and academics from more than 60 countries. During the meeting, applications, challenges, and opportunities in drug discovery, de novo drug design, ADME-Tox (absorption, distribution, metabolism, excretion and toxicity) property predictions, organic chemistry, peptides, and antibiotic resistance were discussed. The program along with the recordings of all sessions are freely available at https://www.difacquim.com/english/events/2022-colloquium/ .

3.
Article En | MEDLINE | ID: mdl-35475037

The search for novel therapeutic compounds remains an overwhelming task owing to the time-consuming and expensive nature of the drug development process and low success rates. Traditional methodologies that rely on the one drug-one target paradigm have proven insufficient for the treatment of multifactorial diseases, leading to a shift to multitarget approaches. In this emerging paradigm, molecules with off-target and promiscuous interactions may result in preferred therapies. In this study, we developed a general pipeline combining machine learning algorithms and a deep generator network to train a dual inhibitor classifier capable of identifying putative pharmacophoric traits. As a case study, we focused on dual inhibitors targeting DNA methyltransferase 1 (DNMT) and histone deacetylase 2 (HDAC2), two enzymes that play a central role in epigenetic regulation. We used this approach to identify dual inhibitors from a novel large natural product database in the public domain. We used docking and atomistic simulations as complementary approaches to establish the ligand-interaction profiles between the best hits and DNMT1/HDAC2. By using the combined ligand- and structure-based approaches, we discovered two promising novel scaffolds that can be used to simultaneously target both DNMT1 and HDAC2. We conclude that the flexibility and adaptability of the proposed pipeline has predictive capabilities of similar or derivative methods and is readily applicable to the discovery of small molecules targeting many other therapeutically relevant proteins.

4.
Pharmaceuticals (Basel) ; 14(1)2020 Dec 27.
Article En | MEDLINE | ID: mdl-33375520

Inhibitors of DNA methyltransferases (DNMTs) are attractive compounds for epigenetic drug discovery. They are also chemical tools to understand the biochemistry of epigenetic processes. Herein, we report five distinct inhibitors of DNMT1 characterized in enzymatic inhibition assays that did not show activity with DNMT3B. It was concluded that the dietary component theaflavin is an inhibitor of DNMT1. Two additional novel inhibitors of DNMT1 are the approved drugs glyburide and panobinostat. The DNMT1 enzymatic inhibitory activity of panobinostat, a known pan inhibitor of histone deacetylases, agrees with experimental reports of its ability to reduce DNMT1 activity in liver cancer cell lines. Molecular docking of the active compounds with DNMT1, and re-scoring with the recently developed extended connectivity interaction features approach, led to an excellent agreement between the experimental IC50 values and docking scores.

5.
Drug Discov Today ; 25(12): 2268-2276, 2020 12.
Article En | MEDLINE | ID: mdl-33010481

The ability of epigenetic markers to affect genome function has enabled transformative changes in drug discovery, especially in cancer and other emerging therapeutic areas. Concordant with the introduction of the term 'epi-informatics', the size of the epigenetically relevant chemical space has grown substantially and so did the number of applications of cheminformatic methods to epigenetics. Recent progress in epi-informatics has improved our understanding of the structure-epigenetic activity relationships and boosted the development of models predicting novel epigenetic agents. Herein, we review the advances in computational approaches to drug discovery of small molecules with epigenetic modulation profiles, summarize the current chemogenomics data available for epigenetic targets, and provide a perspective on the greater utility of biomedical knowledge mining as a means to advance the epigenetic drug discovery.


Cheminformatics , Drug Discovery , Epigenesis, Genetic , Databases, Factual , Humans
6.
Adv Protein Chem Struct Biol ; 122: 127-180, 2020.
Article En | MEDLINE | ID: mdl-32951810

Epigenetics was coined almost 70 years ago for the description of heritable phenotype without altering DNA sequences. Research on the field has uncovered significant roles of such mechanisms, that account for the biogenesis of several diseases. Further studies have led the way for drug development which targets epi-enzymes, mainly for cancer treatment. Of the numerous epi-targets involved with histone acetylation, bromodomains have captured the spotlight of drug discovery focused on novel therapies. However, due to high sequence identity, the development of potent and selective inhibitors poses a significant challenge. Herein, we discuss recent computational developments on BET inhibitors and other methods that may be applied for drug discovery in general. As a proof-of-concept, we discuss a virtual screening to identify novel BET inhibitors based on coumarin derivatives. From public data, we identified putative structure-activity relationships of coumarin scaffold and propose R-group modifications for BET selectivity. Results showed that the optimization and design of novel coumarins could be further explored.


Computational Biology , Coumarins/chemistry , Drug Discovery , Histone Acetyltransferases , Histone Deacetylase Inhibitors/chemistry , Nuclear Proteins , Coumarins/therapeutic use , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/metabolism , Histone Deacetylase Inhibitors/therapeutic use , Humans , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Structure-Activity Relationship
7.
Adv Protein Chem Struct Biol ; 122: 203-229, 2020.
Article En | MEDLINE | ID: mdl-32951812

There is a growing interest to study and address neglected tropical diseases (NTD). To this end, in silico methods can serve as the bridge that connects academy and industry, encouraging the development of future treatments against these diseases. This chapter discusses current challenges in the development of new therapies, available computational methods and successful cases in computer-aided design with particular focus on human trypanosomiasis. Novel targets are also discussed. As a case study, we identify amentoflavone as a potential inhibitor of TcSir2rp3 (sirtuine) from Trypanosoma cruzi (20.03 µM) with a workflow that integrates chemoinformatic approaches, molecular modeling, and theoretical affinity calculations, as well as in vitro assays.


Biflavonoids/chemistry , Chagas Disease , Computer Simulation , Enzyme Inhibitors/chemistry , Protozoan Proteins , Sirtuins , Trypanocidal Agents/chemistry , Trypanosoma cruzi/enzymology , Biflavonoids/therapeutic use , Chagas Disease/drug therapy , Chagas Disease/enzymology , Enzyme Inhibitors/therapeutic use , Humans , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Sirtuins/antagonists & inhibitors , Sirtuins/chemistry , Trypanocidal Agents/therapeutic use
8.
RSC Adv ; 10(42): 25089-25099, 2020 Jun 29.
Article En | MEDLINE | ID: mdl-35517466

The pandemic caused by SARS-CoV-2 (COVID-19 disease) has claimed more than 500 000 lives worldwide, and more than nine million people are infected. Unfortunately, an effective drug or vaccine for its treatment is yet to be found. The increasing information available on critical molecular targets of SARS-CoV-2 and active compounds against related coronaviruses facilitates the proposal (or repurposing) of drug candidates for the treatment of COVID-19, with the aid of in silico methods. As part of a global effort to fight the COVID-19 pandemic, herein we report a consensus virtual screening of extensive collections of food chemicals and compounds known as dark chemical matter. The rationale is to contribute to global efforts with a description of currently underexplored chemical space regions. The consensus approach included combining similarity searching with various queries and fingerprints, molecular docking with two docking protocols, and ADMETox profiling. We propose compounds commercially available for experimental testing. The full list of virtual screening hits is disclosed.

9.
Prog Chem Org Nat Prod ; 110: 1-35, 2019.
Article En | MEDLINE | ID: mdl-31621009

The chemistry of natural products is fascinating and has continuously attracted the attention of the scientific community for many reasons including, but not limited to, biosynthesis pathways, chemical diversity, the source of bioactive compounds and their marked impact on drug discovery. There is a broad range of experimental and computational techniques (molecular modeling and cheminformatics) that have evolved over the years and have assisted the investigation of natural products. Herein, we discuss cheminformatics strategies to explore the chemistry and applications of natural products. Since the potential synergisms between cheminformatics and natural products are vast, we will focus on three major aspects: (1) exploration of the chemical space of natural products to identify bioactive compounds, with emphasis on drug discovery; (2) assessment of the toxicity profile of natural products; and (3) diversity analysis of natural product collections and the design of chemical collections inspired by natural sources.


Biological Products/chemistry , Computational Biology , Drug Discovery , Chemistry, Pharmaceutical , Models, Molecular
10.
Molecules ; 23(12)2018 Dec 11.
Article En | MEDLINE | ID: mdl-30544967

In this work we discuss the insights from activity landscape, docking and molecular dynamics towards the understanding of the structure-activity relationships of dual inhibitors of major epigenetic targets: lysine methyltransferase (G9a) and DNA methyltranferase 1 (DNMT1). The study was based on a novel data set of 50 published compounds with reported experimental activity for both targets. The activity landscape analysis revealed the presence of activity cliffs, e.g., pairs of compounds with high structure similarity but large activity differences. Activity cliffs were further rationalized at the molecular level by means of molecular docking and dynamics simulations that led to the identification of interactions with key residues involved in the dual activity or selectivity with the epigenetic targets.


Aminoquinolines/chemistry , DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Structure-Activity Relationship , Aminoquinolines/pharmacology , Epigenesis, Genetic/drug effects , Histocompatibility Antigens , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation
11.
Biomolecules ; 8(3)2018 07 23.
Article En | MEDLINE | ID: mdl-30041464

Flavonoids are widely recognized as natural polydrugs, given their anti-inflammatory, antioxidant, sedative, and antineoplastic activities. Recently, different studies showed that flavonoids have the potential to inhibit bromodomain and extraterminal (BET) bromodomains. Previous reports suggested that flavonoids bind between the Z and A loops of the bromodomain (ZA channel) due to their orientation and interactions with P86, V87, L92, L94, and N140. Herein, a comprehensive characterization of the binding modes of fisetin and the biflavonoid, amentoflavone, is discussed. To this end, both compounds were docked with BET bromodomain 4 (BRD4) using four docking programs. The results were post-processed with protein⁻ligand interaction fingerprints. To gain further insight into the binding mode of the two natural products, the docking results were further analyzed with molecular dynamics simulations. The results showed that amentoflavone makes numerous contacts in the ZA channel, as previously described for flavonoids and kinase inhibitors. It was also found that amentoflavone can potentially make contacts with non-canonical residues for BET inhibition. Most of these contacts were not observed with fisetin. Based on these results, amentoflavone was experimentally tested for BRD4 inhibition, showing activity in the micromolar range. This work may serve as the basis for scaffold optimization and the further characterization of flavonoids as BET inhibitors.


Biflavonoids/chemistry , Biflavonoids/pharmacology , Transcription Factors/chemistry , Transcription Factors/metabolism , Animals , Binding Sites , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonols , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Domains , Transcription Factors/antagonists & inhibitors
12.
J Cheminform ; 8: 63, 2016.
Article En | MEDLINE | ID: mdl-27895718

BACKGROUND: Measuring the structural diversity of compound databases is relevant in drug discovery and many other areas of chemistry. Since molecular diversity depends on molecular representation, comprehensive chemoinformatic analysis of the diversity of libraries uses multiple criteria. For instance, the diversity of the molecular libraries is typically evaluated employing molecular scaffolds, structural fingerprints, and physicochemical properties. However, the assessment with each criterion is analyzed independently and it is not straightforward to provide an evaluation of the "global diversity". RESULTS: Herein the Consensus Diversity Plot (CDP) is proposed as a novel method to represent in low dimensions the diversity of chemical libraries considering simultaneously multiple molecular representations. We illustrate the application of CDPs to classify eight compound data sets and two subsets with different sizes and compositions using molecular scaffolds, structural fingerprints, and physicochemical properties. CONCLUSIONS: CDPs are general data mining tools that represent in two-dimensions the global diversity of compound data sets using multiple metrics. These plots can be constructed using single or combined measures of diversity. An online version of the CDPs is freely available at: https://consensusdiversityplots-difacquim-unam.shinyapps.io/RscriptsCDPlots/.Graphical AbstractConsensus Diversity Plot is a novel data mining tool that represents in two-dimensions the global diversity of compound data sets using multiple metrics.

13.
Future Med Chem ; 8(12): 1399-412, 2016 08.
Article En | MEDLINE | ID: mdl-27485744

AIM: Fungi are valuable resources for bioactive secondary metabolites. However, the chemical space of fungal secondary metabolites has been studied only on a limited basis. Herein, we report a comprehensive chemoinformatic analysis of a unique set of 207 fungal metabolites isolated and characterized in a USA National Cancer Institute funded drug discovery project. RESULTS: Comparison of the molecular complexity of the 207 fungal metabolites with approved anticancer and nonanticancer drugs, compounds in clinical studies, general screening compounds and molecules Generally Recognized as Safe revealed that fungal metabolites have high degree of complexity. Molecular fingerprints showed that fungal metabolites are as structurally diverse as other natural products and have, in general, drug-like physicochemical properties. CONCLUSION: Fungal products represent promising candidates to expand the medicinally relevant chemical space. This work is a significant expansion of an analysis reported years ago for a smaller set of compounds (less than half of the ones included in the present work) from filamentous fungi using different structural properties.


Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Computational Biology , Fungi/chemistry , Neoplasms/drug therapy , Antineoplastic Agents/metabolism , Biological Products/metabolism , Drug Discovery , Fungi/metabolism , Humans , Molecular Structure
...