Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Proteome Res ; 14(9): 3859-70, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26211688

RESUMEN

Most reports about the 3-D structure of spidroin-1 have been proposed for the protein in solid state or for individual domains of these proteins. A gel-based mass spectrometry strategy using collision-induced dissociation (CID) and electron-transfer dissociation (ETD) fragmentation methods was used to completely sequence spidroins-1A and -1B and to assign a series of post-translational modifications (PTMs) on to the spidroin sequences. A total of 15 and 16 phosphorylation sites were detected on spidroin-1A and -1B, respectively. In this work, we present the nearly complete amino acid sequence of spidroin-1A and -1B, including the nonrepetitive N- and C-terminal domains and a highly repetitive central core. We also described a fatty acid layer surrounding the protein fibers and PTMs in the sequences of spidroin-1A and -1B, including phosphorylation. Thus, molecular models for phosphorylated spidroins were proposed in the presence of a mixture fatty acids/water (1:1) and submitted to molecular dynamics simulation. The resulting models presented high content of coils, a higher percentage of α-helix, and an almost neglected content of 310-helix than the previous models. Knowledge of the complete structure of spidroins-1A and -1B would help to explain the mechanical features of silk fibers. The results of the current investigation provide a foundation for biophysical studies of the mechanoelastic properties of web-silk proteins.


Asunto(s)
Fibroínas/química , Modelos Moleculares , Seda/química , Arañas/química , Secuencia de Aminoácidos , Animales , Microscopía Electrónica de Rastreo , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
2.
J Proteomics ; 105: 174-85, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24434585

RESUMEN

Spidroin-1 is one of the major ampullate silk proteins produced by spiders for use in the construction of the frame and radii of orb webs, and as a dragline to escape from predators. Only partial sequences of spidroin-1 produced by Nephila clavipes have been reported up to now, and there is no information on post-translational modifications (PTMs). A gel-based mass spectrometry strategy with ETD and CID fragmentation methods were used to sequence and determine the presence/location of any PTMs on the spidroin-1. Sequence coverage of 98.06%, 95.05%, and 98.37% were obtained for N. clavipes, Nephila edulis and for Nephila madagascariensis, respectively. Phosphorylation was the major PTM observed with 8 phosphorylation sites considered reliable on spidroin-1 produced by N. clavipes, 4 in N. madagascariensis and 2 for N. edulis. Dityrosine and 3,4-dihydroxyphenylalanine (formed by oxidation of the spidroin-1) were observed, although the mechanism by which they are formed (i.e. exposure to UV radiation or to peroxidases in the major ampullate silk gland) is uncertain. Herein we present structural information on the spidroin-1 produced by three different Nephila species; these findings may be valuable for understanding the physicochemical properties of the silk proteins and moreover, future designs of recombinantly produced spider silk proteins. Biotechnological significance The present investigation shows for the first time spidroin structure and post-translational modifications observed on the major ampullate silk spidroin-1. The many site specific phosphorylations (localized within the structural motifs) along with the probably photoinduction of hydroxylations may be relevant for scientists in material science, biology, biochemistry and environmental scientists. Up to now all the mechanical properties of the spidroin have been characterized without any consideration about the existence of PTMs in the sequence of spidroins. Thus, these findings for major ampullate silk spidroin-1 from Nephila spiders provide the basis for mechanical-elastic property studies of silk for biotechnological and biomedical potential applications. This article is part of a Special Issue entitled: Proteomics of non-model organisms.


Asunto(s)
Dihidroxifenilalanina/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Arañas/metabolismo , Tirosina/análogos & derivados , Animales , Dihidroxifenilalanina/química , Fibroínas , Espectrometría de Masas , Oxidación-Reducción , Arañas/química , Tirosina/química , Tirosina/metabolismo
3.
Proteomics ; 10(3): 369-79, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20029844

RESUMEN

Although silk is used to produce textiles and serves as a valuable biomaterial in medicine, information on silk proteins of the cocoon is limited. Scanning electron microscopy was applied to morphologically characterise the sample and the solubility of cocoon in lithium thiocyanate and 2-DE was carried out with multi-enzyme in-gel digestion followed by MS identification of silk-peptides. High-sequence coverage of the silk cocoon proteins fibroin light and heavy chain, sericins and fibrohexamerins was revealed and PTMs as heavy phosphorylation of silk fibroin heavy chain; lysine hydroxylation and Lys->allysine formation have been observed providing evidence for lysine-mediated cross linking of silk as found in collagens, which has not been reported so far. Tyrosine oxidation verified the presence of di-tyrosine cross links. A high degree of sequence conflicts probably representing single-nucleotide polymorphisms was observed. PTM and sequence conflicts may be modulating structure and physicochemical properties of silk.


Asunto(s)
Bombyx/química , Bombyx/metabolismo , Proteoma , Seda/química , Seda/metabolismo , Animales , Lisina/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteoma/química , Proteoma/metabolismo , Proteoma/ultraestructura , Seda/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA