Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
1.
Glob Chang Biol ; 30(5): e17273, 2024 May.
Article En | MEDLINE | ID: mdl-38727723

Rapid warming at high latitudes triggers poleward shifts of species' distributions that impact marine biodiversity. In the open sea, the documented redistributions of fish lead to a borealization of Arctic fauna. A climate-driven borealization and increased species diversity at high latitudes are also expected in coastal fish communities, but they have not been previously documented on a large, biogeographic scale. Here, we investigate the impact of temperature change over the last 25 years on fish communities along the coast of Norway. The study area, spanning different ecoclimatic zones between 62° and 71° N, harbors over 200 species of boreal and Arctic fish. Several of these fish species are harvested by coastal and indigenous communities, influencing settlement geography and livelihood. The long-term data on coastal water temperatures and fish species were obtained from monitoring stations and scientific surveys. Water temperature measured at three fixed sampling stations distributed along the coast show increased temperatures during the study period. The fish species distribution and abundance data were obtained from the annually standardized scientific bottom trawl survey program. Fish species richness, which was highest in the south, increased with warming first in the south and then, gradually, further north, eventually affecting biodiversity in the whole study area. Fish community composition showed a distinct latitudinal pattern early in the study, with Arctic fish species confined to the north and boreal species dominating the south. The poleward shifts eventually eroded this zoogeographic pattern, resulting in more boreal fish species in the north and an increased homogenization of species composition along the Norwegian coast. The climate-driven reorganization of fish communities affects coastal ecosystems that are exposed to fisheries, aquaculture, and other rapidly expanding human activities, stressing the urgent need for a climate adaptation of integrated coastal management.


Biodiversity , Climate Change , Fishes , Temperature , Animals , Fishes/physiology , Norway , Arctic Regions
2.
Oecologia ; 204(2): 257-277, 2024 Feb.
Article En | MEDLINE | ID: mdl-38326516

We compared three sets of highly resolved food webs with and without parasites for a subarctic lake system corresponding to its pelagic and benthic compartments and the whole-lake food web. Key topological food-web metrics were calculated for each set of compartments to explore the role parasites play in food-web topology in these highly contrasting webs. After controlling for effects from differences in web size, we observed similar responses to the addition of parasites in both the pelagic and benthic compartments demonstrated by increases in trophic levels, linkage density, connectance, generality, and vulnerability despite the contrasting composition of free-living and parasitic species between the two compartments. Similar effects on food-web topology can be expected with the inclusion of parasites, regardless of the physical characteristics and taxonomic community compositions of contrasting environments. Additionally, similar increases in key topological metrics were found in the whole-lake food web that combines the pelagic and benthic webs, effects that are comparable to parasite food-web analyses from other systems. These changes in topological metrics are a result of the unique properties of parasites as infectious agents and the links they participate in. Trematodes were key contributors to these results, as these parasites have distinct characteristics in aquatic systems that introduce new link types and increase the food web's generality and vulnerability disproportionate to other parasites. Our analysis highlights the importance of incorporating parasites, especially trophically transmitted parasites, into food webs as they significantly alter key topological metrics and are thus essential for understanding an ecosystem's structure and functioning.


Ecosystem , Parasites , Animals , Food Chain , Lakes , Food
3.
Sci Rep ; 13(1): 16749, 2023 10 05.
Article En | MEDLINE | ID: mdl-37798382

High-latitude aquatic ecosystems are responding to rapid climate warming. A longer ice-free season with higher water temperatures may accelerate somatic growth in lake ectotherms, leading to widespread ecological implications. In fish, rising temperatures are expected to boost rates of food intake and conversion, and predictions based on empirical relationships between temperature and growth suggest a substantial increase in fish growth rates during the last decades. Fish abundance negatively affects growth by limiting food availability. This field study addresses the effects of climate warming on growth of a subarctic population of Arctic charr (Salvelinus alpinus (L.) over nearly 40 years. Juvenile growth of 680 individuals of Arctic charr, was reconstructed by sclerochronological analysis using sagittal otoliths sampled annually from the early 1980s to 2016. Statistical modelling revealed a positive effect of water temperature, and a negative effect of abundance on somatic growth in juvenile individuals. Temperature dependence in growth was significant for average and fast-growing individuals across all investigated age classes. These findings suggest that, as temperatures rise, somatic growth of Arctic charr will increase in high latitude lakes. Climate warming will thus influence cold water fish life history and size-structured interactions, with important consequences for their populations and ecosystems.


Ecosystem , Lakes , Animals , Climate , Temperature , Arctic Regions , Fishes , Water
4.
Ecol Evol ; 13(6): e10185, 2023 Jun.
Article En | MEDLINE | ID: mdl-37293123

High latitude ecosystems are experiencing the most rapid warming on earth, expected to trigger a diverse array of ecological responses. Climate warming affects the ecophysiology of fish, and fish close to the cold end of their thermal distribution are expected to increase somatic growth from increased temperatures and a prolonged growth season, which in turn affects maturation schedules, reproduction, and survival, boosting population growth. Accordingly, fish species living in ecosystems close to their northern range edge should increase in relative abundance and importance, and possibly displace cold-water adapted species. We aim to document whether and how population-level effects of warming are mediated by individual-level responses to increased temperatures, shift community structure, and composition in high latitude ecosystems. We studied 11 cool-water adapted perch populations in communities dominated by cold-water adapted species (whitefish, burbot, and charr) to investigate changes in the relative importance of the cool-water perch during the last 30 years of rapid warming in high latitude lakes. In addition, we studied the individual-level responses to warming to clarify the potential mechanisms underlying the population effects. Our long-term series (1991-2020) reveal a marked increase in numerical importance of the cool-water fish species, perch, in ten out of eleven populations, and in most fish communities perch is now dominant. Moreover, we show that climate warming affects population-level processes via direct and indirect temperature effects on individuals. Specifically, the increase in abundance arises from increased recruitment, faster juvenile growth, and ensuing earlier maturation, all boosted by climate warming. The speed and magnitude of the response to warming in these high latitude fish communities strongly suggest that cold-water fish will be displaced by fish adapted to warmer water. Consequently, management should focus on climate adaptation limiting future introductions and invasions of cool-water fish and mitigating harvesting pressure on cold-water fish.

5.
Glob Chang Biol ; 28(11): 3728-3744, 2022 06.
Article En | MEDLINE | ID: mdl-35253321

The warming trend of the Arctic is punctuated by several record-breaking warm years with very low sea ice concentrations. The nature and reversibility of marine ecosystem responses to these multiple extreme climatic events (ECEs) are poorly understood. Here, we investigate the ecological signatures of three successive bottom temperature maxima concomitant with surface ECEs between 2004 and 2017 in the Barents Sea across spatial and organizational scales. We observed community-level redistributions of fish concurrent with ECEs at the scale of the whole Barents Sea. Three groups, characterized by different sets of traits describing their capacity to cope with short-term perturbations, reacted with different timing and intensity to each ECE. Arctic species co-occurred more frequently with large predators and incoming boreal taxa during ECEs, potentially affecting food web structures and functional diversity, accelerating the impacts of long-term climate change. On the species level, responses were highly diversified, with different ECEs impacting different species, and species responses (expansion, geographical shift) varying from one ECE to another, despite the environmental perturbations being similar. Past ECEs impacts, with potential legacy effects, lagged responses, thresholds, and interactions with the underlying warming pressure, could constantly set up new initial conditions that drive the unique ecological signature of each ECE. These results highlight the complexity of ecological reactions to multiple ECEs and give prominence to several sources of process uncertainty in the predictions of climate change impact and risk for ecosystem management. Long-term monitoring and studies to characterize the vertical extent of each ECE are necessary to statistically link demersal species and environmental spatial-temporal patterns. In the future, regular monitoring will be crucial to detect early signals of change and understand the determinism of ECEs, but we need to adapt our models and management to better integrate risk and stochasticity from the complex impacts of global change.


Climate Change , Ecosystem , Animals , Arctic Regions , Fishes , Food Chain
6.
Glob Chang Biol ; 28(9): 2979-2990, 2022 05.
Article En | MEDLINE | ID: mdl-35195322

The assessment of climate impact on marine communities dwelling deeper than the well-studied shelf seas has been hampered by the lack of long-term data. For a long time, the prevailing expectation has been that thermal stability in deep ocean layers will delay ecosystem responses to warming. Few observational studies have challenged this view and indicated that deep organisms can respond exceptionally fast to physical change at the sea surface. To address the depth-specific impact of climate change, we investigated spatio-temporal changes in fish community structure along a bathymetry gradient of 150-1500 m between 1998 and 2016 in East Greenland. Here, the Arctic East Greenland Current and the Atlantic Irminger Current meet and mix, representing a sub-Arctic transition zone. We found the strongest signals of community reorganizations at depths between 350 and 1000 m and only weak responses in the shallowest and deepest regions. Changes were in synchrony with atmospheric warming, loss in sea ice and variability in physical sea surface conditions both within our study region and North of the Denmark Strait. These results suggest that interannual variability and long-term climate trends of the larger ecoregion can rapidly affect fish communities down to 1000-m depth through atmospheric ocean coupling and food web interactions.


Ecosystem , Ice Cover , Animals , Arctic Regions , Climate Change , Fishes , Oceans and Seas
7.
Eur J Clin Pharmacol ; 78(5): 857-867, 2022 May.
Article En | MEDLINE | ID: mdl-35061046

PURPOSE: To describe medication adherence to lipid-lowering drugs (LLDs), antihypertensive drugs, and acetylsalicylic acid (ASA) among persons with coronary heart disease (CHD) and explore its association with low-density-lipoprotein (LDL)-cholesterol, and systolic and diastolic blood pressure. METHODS: Based on record linkage between the seventh wave of the Tromsø Study and the Norwegian Prescription Database, medication adherence was calculated as the proportion of days covered (PDC) for persistent prevalent users in the period of 365 days before the attendance date. Multivariable linear regression models were used to assess the association between systolic and diastolic blood pressure and medication nonadherence to antihypertensive drugs, age, sex, lifestyle, body mass index (BMI), current and previous diabetes, and between LDL-cholesterol and medication nonadherence to LLDs, age, sex, lifestyle, BMI, and current and previous diabetes. RESULTS: Mean PDC was 0.94 for LLDs and antihypertensive drugs and 0.97 for ASA. Among persons with PDC ≥ 0.80 for LLDs, 12.0% had an LDL-cholesterol < 1.8 mmol/L. Blood pressure < 140/90 mmHg (< 140/80 mmHg if diabetes patient) was reached by 55.1% of those with a PDC ≥ 0.80 for antihypertensive drugs. Adherence to LLDs was associated with lower LDL-cholesterol, while neither systolic nor diastolic blood pressure was associated with adherence to antihypertensive drugs. CONCLUSION: Adherence to antihypertensive drugs, LLDs, and ASA among persons with CHD were high despite low achievement of treatment goals for blood pressure and LDL-cholesterol. There was a statistically significant association between adherence to LLDs and LDL-cholesterol, but not between adherence to antihypertensive drugs and blood pressure.


Antihypertensive Agents , Coronary Disease , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Blood Pressure , Cholesterol , Cholesterol, LDL , Coronary Disease/drug therapy , Humans , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/therapeutic use , Medication Adherence
8.
Proc Biol Sci ; 288(1948): 20210054, 2021 04 14.
Article En | MEDLINE | ID: mdl-33823664

As temperatures rise, motile species start to redistribute to more suitable areas, potentially affecting the persistence of several resident species and altering biodiversity and ecosystem functions. In the Barents Sea, a hotspot for global warming, marine fish from boreal regions have been increasingly found in the more exclusive Arctic region. Here, we show that this shift in species distribution is increasing species richness and evenness, and even more so, the functional diversity of the Arctic. Higher diversity is often interpreted as being positive for ecosystem health and is a target for conservation. However, the increasing trend observed here may be transitory as the traits involved threaten Arctic species via predation and competition. If the pressure from global warming continues to rise, the ensuing loss of Arctic species will result in a reduction in functional diversity.


Biodiversity , Ecosystem , Animals , Arctic Regions , Fishes , Temperature
9.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190355, 2020 Oct 02.
Article En | MEDLINE | ID: mdl-32862815

Climate warming influences structure and function of Arctic benthic ecosystems. Assessing the response of these systems to perturbations requires long-term studies addressing key ecological processes related to recolonization and succession of species. Based on unique time-series (1980-2017), this study addresses successional patterns of hard-bottom benthos in two fjords in NW Svalbard after a pulse perturbation in 1980 and during a period of rapid climate warming. Analysis of seafloor photographs revealed different return rates of taxa, and variability in species densities, through time. It took 13 and 24 years for the community compositions of cleared and control transects to converge in the two fjords. Nearly two decades after the study initiation, an increase in filamentous and foliose macroalgae was observed with a subsequent reorganization in the invertebrate community. Trait analyses showed a decrease in body size and longevity of taxa in response to the pulse perturbation and a shift towards small/medium size and intermediate longevity following the macroalgae takeover. The observed slow recovery rates and abrupt shifts in community structure document the vulnerability of Arctic coastal ecosystems to perturbations and continued effects of climate warming. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Ecosystem , Global Warming , Animals , Aquatic Organisms/classification , Aquatic Organisms/growth & development , Arctic Regions , Biomass , Hydrozoa/classification , Hydrozoa/growth & development , Norway , Oceans and Seas , Polyplacophora/classification , Polyplacophora/growth & development , Seaweed/classification , Seaweed/growth & development
10.
Glob Chang Biol ; 26(9): 4894-4906, 2020 Sep.
Article En | MEDLINE | ID: mdl-32479687

Species are redistributing globally in response to climate warming, impacting ecosystem functions and services. In the Barents Sea, poleward expansion of boreal species and a decreased abundance of Arctic species are causing a rapid borealization of the Arctic communities. This borealization might have profound consequences on the Arctic food web by creating novel feeding interactions between previously non co-occurring species. An early identification of new feeding links is crucial to predict their ecological impact. However, detection by traditional approaches, including stomach content and isotope analyses, although fundamental, cannot cope with the speed of change observed in the region, nor with the urgency of understanding the consequences of species redistribution for the marine ecosystem. In this study, we used an extensive food web (metaweb) with nearly 2,500 documented feeding links between 239 taxa coupled with a trait data set to predict novel feeding interactions and to quantify their potential impact on Arctic food web structure. We found that feeding interactions are largely determined by the body size of interacting species, although species foraging habitat and metabolic type are also important predictors. Further, we found that all boreal species will have at least one potential resource in the Arctic region should they redistribute therein. During 2014-2017, 11 boreal species were observed in the Arctic region of the Barents Sea. These incoming species, which are all generalists, change the structural properties of the Arctic food web by increasing connectance and decreasing modularity. In addition, these boreal species are predicted to initiate novel feeding interactions with the Arctic residents, which might amplify their impact on Arctic food web structure affecting ecosystem functioning and vulnerability. Under the ongoing species redistribution caused by environmental change, we propose merging a trait-based approach with ecological network analysis to efficiently predict the impacts of range-shifting species on food webs.


Ecosystem , Food Chain , Arctic Regions , Climate , Climate Change
11.
Sci Rep ; 9(1): 17878, 2019 11 29.
Article En | MEDLINE | ID: mdl-31784548

A fundamental challenge in ecology is to understand why species are found where they are and predict where they are likely to occur in the future. Trait-based approaches may provide such understanding, because it is the traits and adaptations of species that determine which environments they can inhabit. It is therefore important to identify key traits that determine species distributions and investigate how these traits relate to the environment. Based on scientific bottom-trawl surveys of marine fish abundances and traits of >1,200 species, we investigate trait-environment relationships and project the trait composition of marine fish communities across the continental shelf seas of the Northern hemisphere. We show that traits related to growth, maturation and lifespan respond most strongly to the environment. This is reflected by a pronounced "fast-slow continuum" of fish life-histories, revealing that traits vary with temperature at large spatial scales, but also with depth and seasonality at more local scales. Our findings provide insight into the structure of marine fish communities and suggest that global warming will favour an expansion of fast-living species. Knowledge of the global and local drivers of trait distributions can thus be used to predict future responses of fish communities to environmental change.


Fishes/physiology , Animals , Biodiversity , Ecosystem , Fishes/growth & development , Global Warming , Oceans and Seas , Seasons
13.
Data Brief ; 21: 1895-1899, 2018 Dec.
Article En | MEDLINE | ID: mdl-30519614

In this data article, we present the 2004-2014 average European seafood production volume by production sector, country, and species. The production data originates from the Food and Agriculture Organisation of the United Nations (FAO) and covers three production sectors: Marine fisheries, marine aquaculture, and freshwater production. We present the main ecological characteristics of each species produced or harvested. These species characteristics were retrieved from various published sources and include biological sensitivity to harvesting and temperature ranges for the most important species. These indices were weighted by each species production volume in order to produce maps of European country's color-coded by their overall temperature range, maximum temperature, and biological sensitivity within each production sector.

14.
PLoS One ; 13(11): e0207451, 2018.
Article En | MEDLINE | ID: mdl-30462696

When facing environmental change and intensified anthropogenic impact on marine ecosystems, extensive knowledge of how these systems are functioning is required in order to manage them properly. However, in high-latitude ecosystems, where climate change is expected to have substantial ecological impact, the ecosystem functions of biological species have received little attention, partly due to the limited biological knowledge of Arctic species. Functional traits address the ecosystem functions of member species, allowing the functionality of communities to be characterised and the degree of functional redundancy to be assessed. Ecosystems with higher functional redundancy are expected to be less affected by species loss, and therefore less sensitive to disturbance. Here we highlight and compare typical functional characteristics of Arctic and boreal fish in the Barents Sea and address the consequences of a community-wide reorganization driven by climate warming on functional redundancy and characterization. Based on trait and fish community composition data, we assessed functional redundancy of the Barents Sea fish community for the period 2004-2012, a period during which this northern region was characterized by rapidly warming water masses and declining sea ice coverage. We identified six functional groups, with distinct spatial distributions, that collectively provide a functional characterization of Barents Sea fish. The functional groups displayed different prevalence in boreal and Arctic water masses. Some functional groups displayed a spatial expansion towards the northeast during the study period, whereas other groups showed a general decline in functional redundancy. Presently, the observed patterns of functional redundancy would seem to provide sufficient scope for buffering against local loss in functional diversity only for the more speciose functional groups. Furthermore, the observed functional reconfiguration may affect future ecosystem functioning in the area. In a period of rapid environmental change, monitoring programs integrating functional traits will help inform management on ecosystem functioning and vulnerability.


Climate Change , Ecosystem , Fishes , Animals , Biodiversity , Ecology , Ice Cover
15.
Nat Commun ; 9(1): 3673, 2018 09 10.
Article En | MEDLINE | ID: mdl-30202004

There is urgent need to develop novel treatment strategies to reduce antimicrobial resistance. Collateral sensitivity (CS), where resistance to one antimicrobial increases susceptibility to other drugs, might enable selection against resistance during treatment. However, the success of this approach would depend on the conservation of CS networks across genetically diverse bacterial strains. Here, we examine CS conservation across diverse Escherichia coli strains isolated from urinary tract infections. We determine collateral susceptibilities of mutants resistant to relevant antimicrobials against 16 antibiotics. Multivariate statistical analyses show that resistance mechanisms, in particular efflux-related mutations, as well as the relative fitness of resistant strains, are principal contributors to collateral responses. Moreover, collateral responses shift the mutant selection window, suggesting that CS-informed therapies may affect evolutionary trajectories of antimicrobial resistance. Our data allow optimism for CS-informed therapy and further suggest that rapid detection of resistance mechanisms is important to accurately predict collateral responses.


Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli/drug effects , Microbial Sensitivity Tests , Urinary Tract Infections/microbiology , Amdinocillin/pharmacology , Ciprofloxacin/pharmacology , Drug Resistance, Bacterial , Escherichia coli/genetics , Genetic Predisposition to Disease , Genetic Variation , Humans , Models, Statistical , Multivariate Analysis , Mutation , Nitrofurantoin/pharmacology , Phylogeny , Trimethoprim/pharmacology
16.
Pharm Stat ; 17(1): 4-11, 2018 02.
Article En | MEDLINE | ID: mdl-28961357

High antibiotic consumption rates are associated to high prevalence of antimicrobial resistance. Geographical differences in dispensing rates of antibiotics are frequently analysed using statistical methods addressing the central tendency of the data. Yet, examining extreme quantiles may be of equal or greater interest if the problem relates to the extremes of consumption rates, as is the case for antimicrobial resistance. The objective of this study was to investigate how geographic location (latitude) and municipality population size affect antibiotic consumption in Norway. We analysed all outpatient antibiotic prescriptions (n > 14 000 000) in Norway between 2004 and 2010 using quantile regression. Data were stratified by year, and we aggregated individual data to municipality, county, or latitudinal range. We specified the quantile regression models using directed acyclic graphs and selected the model based on Akaike information criteria. Yearly outpatient antibiotic consumption in Norway varied up to 10-fold at municipality level. We found geographical variation to depend on the number of inhabitants in a municipality and on latitude. These variables interacted, so that consumption declined with increasing latitude when municipality population sizes were small, but the effect of latitude diminished as the number of inhabitants increased. Aggregation to different levels of spatial resolution did not significantly affect our results. In Norway, outpatient antibiotic dispensing rates decreases with latitude at a rate contingent on municipality population size. Quantile regression analysis provides a flexible and powerful tool to address problems related to high, or low, dispensing rates.


Ambulatory Care/trends , Anti-Bacterial Agents/therapeutic use , Population Density , Ambulatory Care/methods , Ambulatory Care/statistics & numerical data , Cross-Sectional Studies , Databases, Factual/trends , Drug Prescriptions/statistics & numerical data , Humans , Norway/epidemiology , Outpatients/statistics & numerical data , Regression Analysis
17.
Proc Natl Acad Sci U S A ; 114(46): 12202-12207, 2017 11 14.
Article En | MEDLINE | ID: mdl-29087943

Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions.


Animal Distribution , Climate Change , Fishes/physiology , Models, Statistical , Adaptation, Biological , Animals , Arctic Regions , Ecosystem , Temperature
19.
BMC Microbiol ; 17(1): 34, 2017 Feb 15.
Article En | MEDLINE | ID: mdl-28202049

BACKGROUND: Natural transformation enables acquisition of adaptive traits and drives genome evolution in prokaryotes. Yet, the selective forces responsible for the evolution and maintenance of natural transformation remain elusive since taken-up DNA has also been hypothesized to provide benefits such as nutrients or templates for DNA repair to individual cells. RESULTS: We investigated the immediate effects of DNA uptake and recombination on the naturally competent bacterium Acinetobacter baylyi in both benign and genotoxic conditions. In head-to-head competition experiments between DNA uptake-proficient and -deficient strains, we observed a fitness benefit of DNA uptake independent of UV stress. This benefit was found with both homologous and heterologous DNA and was independent of recombination. Recombination with taken-up DNA reduced survival of transformed cells with increasing levels of UV-stress through interference with nucleotide excision repair, suggesting that DNA strand breaks occur during recombination attempts with taken-up DNA. Consistent with this, we show that absence of RecBCD and RecFOR recombinational DNA repair pathways strongly decrease natural transformation. CONCLUSIONS: Our data show a physiological benefit of DNA uptake unrelated to recombination. In contrast, recombination during transformation is a strand break inducing process that represents a previously unrecognized cost of natural transformation.


Acinetobacter/genetics , Acinetobacter/radiation effects , Biological Evolution , Cost-Benefit Analysis , Transformation, Bacterial/genetics , Transformation, Bacterial/radiation effects , Acinetobacter/enzymology , Acinetobacter/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/radiation effects , DNA Damage/radiation effects , DNA Repair/physiology , DNA Repair/radiation effects , DNA, Bacterial/genetics , DNA, Bacterial/radiation effects , Exodeoxyribonuclease V/metabolism , Exodeoxyribonuclease V/radiation effects , Gene Deletion , Gene Transfer, Horizontal/genetics , Gene Transfer, Horizontal/radiation effects , Genes, Bacterial/genetics , Genes, Bacterial/radiation effects , Membrane Proteins/genetics , Membrane Proteins/radiation effects , Mutation/genetics , Mutation/radiation effects , Phenotype , Recombination, Genetic/radiation effects , Stress, Physiological , Survival , Ultraviolet Rays/adverse effects
20.
Proc Biol Sci ; 282(1814)2015 Sep 07.
Article En | MEDLINE | ID: mdl-26336179

Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning.


Climate Change , Ecosystem , Fishes/physiology , Food Chain , Animals , Aquatic Organisms , Arctic Regions , Geography , Oceans and Seas
...