Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Med Genet A ; 194(3): e63430, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37872709

RESUMEN

Clinical interpretation of genetic variants in the context of the patient's phenotype is a time-consuming and costly process. In-silico analysis using in-silico prediction tools, and molecular modeling have been developed to predict the influence of genetic variants on the quality and/or quantity of the resulting translated protein, and in this way, to alert clinicians of disease likelihood in the absence of previous evidence. Our objectives were to evaluate the success rate of the in-silico analysis in predicting the disease-causing variants as pathogenic and the single-nucleotide variants as neutral, and to establish the reliability of in-silico analysis for determining pathogenicity or neutrality of von Willebrand factor gene-associated genetic variants. Using in-silico analysis, we studied pathogenicity in 31 disease-causing variants, and neutrality in 61 single-nucleotide variants from patients previously diagnosed as type 2 von Willebrand disease. Disease-causing variants and non-synonymous single-nucleotide variants were explored by in-silico tools that analyze the amino acidic sequence. Intronic and synonymous single-nucleotide variants were analyzed by in-silico methods that evaluate the nucleotidic sequence. We found a consistent agreement between predictions achieved by in-silico prediction tools and molecular modeling, both for defining the pathogenicity of disease-causing variants and the neutrality of single-nucleotide variants. Based on our results, the in-silico analysis would help to define the pathogenicity or neutrality in novel genetic variants observed in patients with clinical and laboratory phenotypes suggestive of von Willebrand disease.


Asunto(s)
Enfermedades de von Willebrand , Factor de von Willebrand , Humanos , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo , Relevancia Clínica , Reproducibilidad de los Resultados , Enfermedades de von Willebrand/diagnóstico , Enfermedades de von Willebrand/genética , Nucleótidos
2.
Foods ; 12(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37761071

RESUMEN

Whey is a by-product that represents a cheap source of protein with a high nutritional value, often used to improve food quality. When used as a raw material to produce hypoallergenic infant formulas (HIF), a processing step able to decrease the allergenic potential is required to guarantee their safe use for this purpose. In the present paper, thermal treatments, high hydrostatic pressure (HHP), and enzymatic hydrolysis (EH) were assessed to decrease the antigenicity of whey protein solutions (WPC). For monitoring purposes, a competitive ELISA method, able to detect the major and most allergenic whey protein ß-lactoglobulin (BLG), was developed as a first step to evaluate the efficiency of the processes. Results showed that EH together with HHP was the most effective combination to reduce WPC antigenicity. The evaluation method proved useful to monitor the processes and to be employed in the quality control of the final product, to guarantee the efficiency, and in protein antigenicity reduction.

3.
Semin Thromb Hemost ; 47(7): 862-874, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34130347

RESUMEN

Type 2A and 2M von Willebrand disease (VWD) broadly show similar phenotypic parameters, but involve different pathophysiological mechanisms. This report presents the clinical and laboratory profiles of type 2A and type 2M patients genotypically diagnosed at one large center. Higher bleeding score values and a higher incidence of major bleeding episodes were observed in type 2A compared with type 2M, potentially reflective of the absence of large and intermediate von Willebrand factor (VWF) multimers in 2A. In type 2A, most of disease-causing variants (DCVs) appeared to be responsible for increased VWF clearance and DCV clustered in the VWF-A1 domain resulted in more severe clinical profiles. In type 2M, DCV in the VWF-A1 domain showed different laboratory patterns, related to either reduced synthesis or shortened VWF survival, and DCV in the VWF-A2 domain showed patterns related mainly to shortened survival. VWF-type 1 collagen binding/Ag (C1B/Ag) showed different patterns according to DCV location: in type 2A VWD, C1B/Ag was much lower when DCVs were located in the VWF-A2 domain. In type 2M with DCV in the VWF-A1domain, C1B/Ag was normal, but with DCV in the VWF-A2 domain, C1B/Ag was low. The higher frequency of major bleeding in VWD 2M patients with DCV in the VWF-A2 domain than that with DCV in the VWF-A1 domain could be a summative effect of abnormal C1B/Ag, on top of the reduced VWF-GPIb binding. In silico modeling suggests that DCV impairing the VWF-A2 domain somehow modulates collagen binding to the VWF-A3 domain. Concomitant normal FVIII:C/Ag and VWFpp/Ag, mainly in type 2M VWD, suggest that other nonidentified pathophysiological mechanisms, neither related to synthesis/retention nor survival of VWF, would be responsible for the presenting phenotype.


Asunto(s)
Enfermedad de von Willebrand Tipo 2 , Enfermedades de von Willebrand , Hemorragia , Humanos , Fenotipo , Enfermedad de von Willebrand Tipo 2/genética , Enfermedades de von Willebrand/genética , Factor de von Willebrand/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA