Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSystems ; 8(4): e0005223, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37439558

RESUMEN

Tuberculosis (TB), caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb), is a global health threat. Targeting host pathways that modulate protective or harmful components of inflammation has been proposed as a therapeutic strategy that could aid sterilization or mitigate TB-associated permanent tissue damage. In purified form, many Mtb components can activate innate immune pathways. However, knowledge of the pathways that contribute most to the observed response to live Mtb is incomplete, limiting the possibility of precise intervention. We took a systematic, unbiased approach to define the pathways that drive the earliest immune response to Mtb. Using a macrophage model of infection, we compared the bulk transcriptional response to infection with the response to a panel of Mtb-derived putative innate immune ligands. We identified two axes of response: an NF-kB-dependent response similarly elicited by all Mtb pathogen-associated molecular patterns (PAMPs) and a type I interferon axis unique to cells infected with live Mtb. Consistent with growing literature data pointing to TLR2 as a dominant Mtb-associated PAMP, the TLR2 ligand PIM6 most closely approximated the NF-kB-dependent response to the intact bacterium. Quantitatively, the macrophage response to Mtb was slower and weaker than the response to purified PIM6. On a subpopulation level, the TLR2-dependent response was heterogeneously induced, with only a subset of infected cells expressing key inflammatory genes known to contribute to the control of infection. Despite potential redundancies in Mtb ligand/innate immune receptor interactions during in vivo infection, loss of the TLR2/PIM6 interaction impacted the cellular composition of both the innate and adaptive compartments. IMPORTANCE Tuberculosis (TB) is a leading cause of death globally. Drug resistance is outpacing new antibiotic discovery, and even after successful treatment, individuals are often left with permanent lung damage from the negative consequences of inflammation. Targeting host inflammatory pathways has been proposed as an approach that could either improve sterilization or improve post-treatment lung health. However, our understanding of the inflammatory pathways triggered by Mycobacterium tuberculosis (Mtb) in infected cells and lungs is incomplete, in part because of the complex array of potential molecular interactions between bacterium and host. Here, we take an unbiased approach to identify the pathways most central to the host response to Mtb. We examine how individual pathways are triggered differently by purified Mtb products or infection with the live bacterium and consider how these pathways inform the emergence of subpopulation responses in cell culture and in infected mice. Understanding how individual interactions and immune pathways contribute to inflammation in TB opens the door to the possibility of developing precise therapeutic interventions.


Asunto(s)
Interacciones Huésped-Patógeno , Macrófagos , Mycobacterium tuberculosis , Receptor Toll-Like 2 , Tuberculosis , Células Cultivadas , Macrófagos/inmunología , Macrófagos/microbiología , Animales , Ratones , Tuberculosis/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos , Interferón Tipo I/inmunología , Viabilidad Microbiana , FN-kappa B/inmunología , Receptor Toll-Like 2/inmunología , Microambiente Celular/inmunología , Interacciones Huésped-Patógeno/inmunología
2.
Elife ; 102021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34755600

RESUMEN

For many intracellular pathogens, the phagosome is the site of events and interactions that shape infection outcome. Phagosomal membrane damage, in particular, is proposed to benefit invading pathogens. To define the innate immune consequences of this damage, we profiled macrophage transcriptional responses to wild-type Mycobacterium tuberculosis (Mtb) and mutants that fail to damage the phagosomal membrane. We identified a set of genes with enhanced expression in response to the mutants. These genes represented a late component of the TLR2-dependent transcriptional response to Mtb, distinct from an earlier component that included Tnf. Expression of the later component was inherent to TLR2 activation, dependent upon endosomal uptake, and enhanced by phagosome acidification. Canonical Mtb virulence factors that contribute to phagosomal membrane damage blunted phagosome acidification and undermined the endosome-specific response. Profiling cell survival and bacterial growth in macrophages demonstrated that the attenuation of these mutants is partially dependent upon TLR2. Further, TLR2 contributed to the attenuated phenotype of one of these mutants in a murine model of infection. These results demonstrate two distinct components of the TLR2 response and identify a component dependent upon endosomal uptake as a point where pathogenic bacteria interfere with the generation of effective inflammation. This interference promotes tuberculosis (TB) pathogenesis in both macrophage and murine infection models.


Asunto(s)
Mycobacterium tuberculosis/fisiología , Receptor Toll-Like 2/genética , Factores de Virulencia/fisiología , Animales , Macrófagos/inmunología , Ratones , Receptor Toll-Like 2/metabolismo
3.
ACS Infect Dis ; 4(11): 1623-1634, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30141623

RESUMEN

Copper (Cu) ions are critical in controlling bacterial infections, and successful pathogens like Mycobacterium tuberculosis (Mtb) possess multiple Cu resistance mechanisms. We report, as proof of concept, that a novel Cu hypersensitivity phenotype can be generated in mycobacteria, including Mtb, through a peptide, DAB-10, that is able to form reactive oxygen species (ROS) following Cu-binding. DAB-10 induces intramycobacterial oxidative stress in a Cu-dependent manner in vitro and during infection. DAB-10 penetrates murine macrophages and encounters intracellular mycobacteria. Significant intracellular Cu-dependent protection was observed when Mtb-infected macrophages were treated with DAB-10 alongside a cell-permeable Cu chelator. Treatment with the Cu chelator reversed the intramycobacterial oxidative shift induced by DAB-10. We conclude that DAB-10 utilizes the pool of phagosomal Cu ions in the host-Mtb interface to augment the mycobactericidal activity of macrophages while simultaneously exploiting the susceptibility of Mtb to ROS. DAB-10 serves as a model with which to develop next-generation, multifunctional antimicrobials.


Asunto(s)
Quelantes/farmacología , Cobre/química , Mycobacterium tuberculosis/efectos de los fármacos , Péptidos/farmacología , Fagosomas/química , Animales , Antibacterianos/farmacología , Quelantes/química , Interacciones Huésped-Patógeno , Macrófagos/microbiología , Ratones , Oxidación-Reducción , Estrés Oxidativo , Péptidos/química , Prueba de Estudio Conceptual , Células RAW 264.7 , Tuberculosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...